46 resultados para Ãcidos grasos
Resumo:
The conversion of plant biomass-derived carbohydrates (preferably non-edible) into added-value products is envisaged to be at the core of the future biorefineries. Carbohydrates are the most abundant natural organic polymers on Earth. This work deals with the chemical valorisation of plant biomass, focusing on the acid-catalysed conversion of carbohydrates (mono and polysaccharides) to furanic aldehydes, namely 2-furaldehyde (Fur) and 5-hydroxymethyl-2-furaldehyde (Hmf), which are valuable platform chemicals that have the potential to replace a variety of oil derived chemicals and materials. The investigated reaction systems can be divided into two types depending on the solvent used to dissolve the carbohydrates in the reaction medium: water or ionic liquid-based systems. The reaction temperatures were greater than 150 ºC when the solvent was water, and lower than 150 º C in the cases of the ionic liquid-based catalytic systems. As alternatives to liquid acids (typically used in the industrial production of Fur), solid acid catalysts were investigated in these reaction systems. Aiming at the identification of (soluble and insoluble) reaction products, complementary characterisation techniques were used namely, FT-IR spectroscopy, liquid and solid state NMR spectroscopy, TGA, DSC and GC´GC-ToFMS analyses. Complex mixtures of soluble reaction products were obtained and different types of side reactions may occur. The requirements to be put on the catalysts for these reaction systems partly depend on the type of carbohydrates to be converted and the reaction conditions used. The thermal stability is important due to the fact that formation of humins and catalyst coking phenomena are characteristically inherent to these types of reactions systems leading to the need to regenerate the catalyst which can be effectively accomplished by calcination. Special attention was given to fully inorganic nanoporous solid acids, amorphous or crystalline, and consisting of nano to micro-size particles. The investigated catalysts were silicoaluminophosphates, aluminosilicates and zirconium-tungsten mixed oxides which are versatile catalysts in that their physicochemical properties can be fine-tuned to improve the catalytic performances in the conversion of different substrates (e.g. introduction of mesoporosity and modification of the acid properties). The catalytic systems consisting of aluminosilicates as solid acids and water as solvent seem to be more effective in converting pentoses and related polysaccharides into Fur, than hexoses and related polysaccharides into Hmf. The investigated solid acids exhibited fairly good hydrothermal stabilities. On the other hand, ionic liquid-based catalytic systems can allow reaching simultaneously high Fur and Hmf yields, particularly when Hmf is obtained from D-fructose and related polysaccharides; however, catalyst deactivation occurs and the catalytic reactions take place in homogeneous phase. As pointed out in a review of the state of the art on this topic, the development of truly heterogeneous ionic liquid-based catalytic systems for producing Fur and Hmf in high yields remains a challenge.
Resumo:
Sea salt is a natural product obtained from the evaporation of seawater in saltpans due to the combined effect of wind and sunlight. Nowadays, there is a growing interest for protection and re-valorisation of saltpans intrinsically associated to the quality of sea salt that can be evaluated by its physico-chemical properties. These man-made systems can be located in different geographical areas presenting different environmental surroundings. During the crystallization process, organic compounds coming from these surroundings can be incorporated into sea salt crystals, influencing their final composition. The organic matter associated to sea salt arises from three main sources: algae, surrounding bacterial community, and anthropogenic activity. Based on the hypothesis that sea salt contains associated organic compounds that can be used as markers of the product, including saltpans surrounding environment, the aim of this PhD thesis was to identify these compounds. With this purpose, this work comprised: 1) a deep characterisation of the volatile composition of sea salt by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME/GCGC–ToFMS) methodology, in search of potential sea salt volatile markers; 2) the development of a methodology to isolate the polymeric material potentially present in sea salt, in amounts that allow its characterisation in terms of polysaccharides and protein; and 3) to explore the possible presence of triacylglycerides. The high chromatographic resolution and sensitivity of GC×GC–ToFMS enabled the separation and identification of a higher number of volatile compounds from sea salt, about three folds, compared to unidimentional chromatography (GC–qMS). The chromatographic contour plots obtained revealed the complexity of marine salt volatile composition and confirmed the relevance of GC×GC–ToFMS for this type of analysis. The structured bidimentional chromatographic profile arising from 1D volatility and 2D polarity was demonstrated, allowing more reliable identifications. Results obtained for analysis of salt from two locations in Aveiro and harvested over three years suggest the loss of volatile compounds along the time of storage of the salt. From Atlantic Ocean salts of seven different geographical origins, all produced in 2007, it was possible to identify a sub-set of ten compounds present in all salts, namely 6-methyl-5-hepten-2-one, 2,2,6-trimethylcyclohexanone, isophorone, ketoisophorone, β-ionone-5,6-epoxide, dihydroactinidiolide, 6,10,14-trimethyl-2-pentadecanone, 3-hydroxy-2,4,4-trimethylpentyl 2-methylpropanoate, 2,4,4-trimethylpentane-1,3-diyl bis(2-methylpropanoate), and 2-ethyl-1-hexanol. These ten compounds were considered potential volatile markers of sea salt. Seven of these compounds are carotenoid-derived compounds, and the other three may result from the integration of compounds from anthropogenic activity as metabolites of marine organisms. The present PhD work also allowed the isolation and characterisation, for the first time, of polymeric material from sea salt, using 16 Atlantic Ocean salts. A dialysis-based methodology was developed to isolate the polymeric material from sea salt in amounts that allowed its characterisation. The median content of polymeric material isolated from the 16 salts was 144 mg per kg of salt, e.g. 0.014% (w/w). Mid-infrared spectroscopy and thermogravimetry revealed the main occurrence of sulfated polysaccharides, as well as the presence of protein in the polymeric material from sea salt. Sea salt polysaccharides were found to be rich in uronic acid residues (21 mol%), glucose (18), galactose (16), and fucose (13). Sulfate content represented a median of 45 mol%, being the median content of sulfated polysaccharides 461 mg/g of polymeric material, which accounted for 66 mg/kg of dry salt. Glycosidic linkage composition indicates that the main sugar residues that could carry one or more sulfate groups were identified as fucose and galactose. This fact allowed to infer that the polysaccharides from sea salt arise mainly from algae, due to their abundance and composition. The amino acid profile of the polymeric material from the 16 Atlantic Ocean salts showed as main residues, as medians, alanine (25 mol%), leucine (14), and valine (14), which are hydrophobic, being the median protein content 35 mg/g, i.e. 4,9 mg per kg of dry salt. Beside the occurrence of hydrophobic volatile compounds in sea salt, hydrophobic non-volatile compounds were also detected. Triacylglycerides were obtained from sea salt by soxhlet extraction with n-hexane. Fatty acid composition revealed palmitic acid as the major residue (43 mol%), followed by stearic (13), linolenic (13), oleic (12), and linoleic (9). Sea salt triacylglycerides median content was 1.5 mg per kg of dry salt. Both protein and triacylglycerides seem to arise from macro and microalgae, phytoplankton and cyanobacteria, due to their abundance and composition. Despite the variability resulting from saltpans surrounding environment, this PhD thesis allowed the identification of a sea salt characteristic organic compounds profile based on volatile compounds, polysaccharides, protein, and triacylglycerides.
Resumo:
Coral reefs are of utmost ecological and economical importance but are currently in global decline due to climate change and anthropogenic disturbances. Corals, as well as other cnidarian species, live in symbiosis with photosynthetic dinoflagellates of the genus Symbiodinium. This relationship provides the cnidarian host with alternative metabolic pathways, as the symbionts translocate photosynthetic carbon to the animal. Besides this autotrophic nutrition mode, symbiotic cnidarians also take up organic matter from the environment (heterotrophy). The nutritional balance between auto- and heterotrophy is critical for the functioning, fitness and resilience of the cnidariandinoflagellate symbiosis. New methodological approaches were developed to better understand the role of auto- and heterotrophy in the ecophysiology of cnidarians associated with Symbiodinium, and the ecological implications of this trophic plasticity. Specifically, the new approaches were developed to assess photophysiology, biomass production of the model organism Aiptasia sp. and molecular tools to investigate heterotrophy in the cnidarian-dinoflagellate symbiosis. Using these approaches, we were able to non-invasively assess the photophysiological spatial heterogeneity of symbiotic cnidarians and identify spatial patterns between chlorophyll fluorescence and relative content of chlorophyll a and green-fluorescent proteins. Optimal culture conditions to maximize the biomass production of Aiptasia pallida were identified, as well as their implications on the fatty acid composition of the anemones. Molecular trophic markers were used to determine prey digestion times in symbiotic cnidarians, which vary between 1-3 days depending on prey species, predator species and the feeding history of the predator. This method was also used to demonstrate that microalgae is a potential food source for symbiotic corals. By using a stable isotope approach to assess the trophic ecology of the facultative symbiotic Oculina arbuscula in situ, it was possible to demonstrate the importance of pico- and nanoplanktonic organisms, particularly autotrophic, in the nutrition of symbiotic corals. Finally, we showed the effects of functional diversity of Symbiodinium on the nutritional plasticity of the cnidarian-dinoflagellate symbiosis. Symbiont identity defines this plasticity through its individual metabolic requirements, capacity to fix carbon, quantity of translocated carbon and the host’s capacity to feed and digest prey.
Resumo:
The sustainable viticulture of a region passes, among other aspects, for maximizing the varieties potential minimizing subsequent interventions during winemaking, which should contribute to the production of quality wines maintaining their typicity and rationalizing costs. The detailed knowledge of each Appellation specificities, namely vineyard parcel (soil type and topographical peculiarities) and harvest climatic conditions is crucial for sustainability in this sector. Thus, in line with this current trend, the starting point for the development of this PhD thesis was to evaluate the oenological potential of different varieties cultivated throughout Bairrada Appellation (Portugal). During maturation several changes in grape varieties occur, namely berries become sweeter, less acidic, and they develop flavour, aroma and colour properties. The development of these characteristics is essential to define grapes oenological potential, i.e. to estimate the possibility of their usage to produce specific wines. A three years sampling plan was designed to evaluate the effect of harvest year and parcel characteristics on V. vinifera cv. Arinto, Bical, Sauvignon Blanc, Baga, Castelão, Touriga Nacional, and Sousão grapes composition. For each variety, 3 parcels with different characteristics were selected. Several physicochemical parameters were evaluated, during maturation: berry weight, pH, titratable acidity, sugar and phenolic contents, antiradical activity, and volatile composition (free fraction). Special attention was devoted to grapes at technologic maturity, since, besides these parameters, glycosidically-linked fraction was also considered. By using the results obtained at technologic maturity, a comprehensive approach was applied to identify the significance of harvest and parcel characteristics effects on each variety composition. Considering all the parameters under study, it may be highlighted some significant differences. According to the obtained results determined during maturation, it was possible to conclude that Arinto, Bical and Sauvignon Blanc grapes from parcels with clay-sandy and clay-calcareous soils have higher phenolic content and antiradical activity. Otherwise, Sauvignon Blanc presented similar volatile composition for grapes cultivated in the 3 parcels, while Arinto and Bical exhibited higher volatile content in grapes from claysandy and clay-calcareous soils. For Baga, Castelão and Touriga Nacional red varieties, grapes with higher phenolic content, antiradical activity, and volatile content were obtained from clayey and clay-calcareous soils. Furthermore, for Touriga Nacional, parcels altitude seems also to modulate grapes composition. Beyond parcel effect, harvest year conditions also influence grapes composition: 2011 harvest was related with lower phenolic and volatile contents, as well as lower antiradical activity.For grapes collected at technologic maturity, analysis of variance-simultaneous component analysis (ASCA) was applied combining all the parameters under study, in order to assess the influence of harvest and parcel characteristics on each variety oenological potential. The results obtained using this comprehensive approach is closely related with those observed during maturation and revealed that harvest was the main factor that influenced grapes composition (53% to 68% of the total data set variance) followed by parcel characteristics, explaining ca. 15-19% of the total data set variance. The oenological potential of each variety may be different from one parcel to another, i.e., clay-sandy and clay-calcareous related-environments seem to favour Arinto and Bical white grapes composition, but for the red varieties, grapes composition was favoured by clayey and clay-calcareous soils. Besides, also higher altitude seems to favour Touriga Nacional grapes composition. Sauvignon Blanc seems to be a variety well adapted to the different parcel characteristics. In order to go forward in the valuation of these varieties, the aroma properties of 6 monovarietal wines were studied based on an aroma network-approach, linking molecular data related to volatile composition and aroma data about the key odor active molecules. This approach allowed to identify different wine aroma properties and to infer about the consumer’s sensory perception. It was found that aroma properties differ from one wine variety to another: while Arinto and Sauvignon Blanc wine exhibited higher tree fruity, sweety and flowery aromas, related essentially with ester compounds and C13 norisoprenoids, the opposite was obtained for Bical wine, corroborating the aroma sensory perceptions of the trained panel. Sauvignon Blanc also exhibited higher toasted aromas (related with thiols, mainly with 2-methyl-3-furanthiol). Touriga Nacional red wine exhibited higher tree, tropical, and berry fruits notes (sensory described as sweet fruits), toasted and flowery aromas, while these are similar for the other red wines under study. Besides Portuguese Bairrada wines, this aroma network approach is a tool that can be used to explain the aroma properties of wines worldwide. The grape and wine data generated under the present PhD thesis, in the context of Bairrada Appellation, shows the unique character of each variety, and may be used by growers and wine producers as a support for decisionmaking based on objective criteria, increasing the sustainability in this sector. For instance, it is possible to take advantage of the natural resources and produce products with different characteristics obtained from the same variety, minimizing costs during the winemaking process.
Resumo:
The present work aimed to explore the potential of new nanocomposites based on carbon nanostructures and metal nanoparticles for the detection of biomolecules through surface enhanced Raman scattering (SERS). In a first step, polyvinyl alcohol composites were prepared incorporating silver nanoparticles by two different reduction procedures. At first without introduction of carbon nanostructures. These composites showed good results for the SERS identification of nucleic acids. Next, the synthesis and characterization of graphene oxide was studied to be used in the preparation of silver and gold nanocomposites. The reduction of this nanomaterial with different chemical agents was explored, since its reduction degree may be a determinant factor for the application envisaged (biomolecules interaction). The preparation of the nanocomposites with silver and gold was performed with different reducing agents. The SERS activity of these new nanocomposites was then explored in the presence of different analytes, varying the experimental conditions for Raman spectra acquisition. It was interesting to verify that the silver containing nanocomposites presented the particularity to intensify the graphene D and G bands. It is also important to highlight that a new eco-friendly reducing agent was tested for the synthesis of the graphene oxide composites, an Eucalyptus Globulus extract. Other variable introduced was the preparation of gold nanostars synthesized with hydroxylamine in the presence of graphene oxide, which allowed the preparation of a new nanocomposite with SERS potential. Fibrous membranes were also prepared by electrospinning with the aim to prepare SERS supports with adequate topography and porosity for the formation of nanoparticles agglomerates for the creation of the so-called hot-spots and also to allow the penetration of the analyte molecules. The polymers polyvinyl alcohol and polyacrylonitrile were selected for electrospinning. Using this technique, electrospun mantles with silver and gold nanoparticles and nanocomposites were prepared. Several variables were studied, such as the introduction of the nano-fillers during the electrospinning process, later deposition of the nano-fillers on the simple electrospun polymeric fibres and surface functionalization of the simple polymeric membranes to link the nano-fillers. At last, the potentialities of using carbon nanotubes forests, produced by chemical vapor deposition and coated with gold film by sputtering, as new SERS substrates were explored. It was found that the SERS detection of DNA bases and ADN itself is possible using these substrates.
Resumo:
The main purpose of this thesis is to investigate the potential of ionic liquids (ILs) as a new class of extractive solvents for added-value products from biomass. These include phenolic compounds (vanillin, gallic, syringic and vanillic acids), alkaloids (caffeine) and aminoacids (L-tryptophan). The interest on these natural compounds relies on the wide variety of relevant properties shown by those families and further application in the food, cosmetic and pharmaceutical industries. Aiming at developping more benign and effective extraction/purification techniques than those used, a comprehensive study was conducted using aqueous biphasic systems (ABS) composed of ILs and inorganic/organic salts. In addition, ILs were characterized by a polarity scale, using solvatochromic probes, aiming at providing prior indications on the ILs affinity for particular added-value products. Solid-liquid (S-L) extractions from biomass and using aqueous solution of ILs were also investigated. In particular, and applying and experimental factorial design to optimize the operational conditions, caffeine was extracted from guaraná seeds and spent coffee. With both types of extractions it was found that it is possible to recover the high-value compounds and to recycle the IL and salt solutions. Finally, aiming at exploring the recovery of added-value compounds from biomass using a simpler and more suistainable technique, the solubility of gallic acid, vanillin and caffeine was studied in aqueous solutions of several ILs and common salts. With the gathered results it was possible to demonstrate that ILs act as hydrotropes and that water can be used as an adequate antisolvent. This thesis describes the use of ILs towards the development of more effective and sustainable processes.
Resumo:
Mitochondria are central organelles for cell survival with particular relevance in energy production and signalling, being mitochondrial fatty acid β–oxidation (FAO) one of the metabolic pathways harboured in this organelle. FAO disorders (FAOD) are among the most well studied inborn errors of metabolism, mainly due to their impact in health. Nevertheless, some questions remain unsolved, as their prevalence in certain European regions and how pathophysiological determinants combine towards the phenotype. Analysis of data from newborn screening programs from Portugal and Spain allowed the estimation of the birth prevalence of FAOD revealing that this group of disorders presents in Iberia (and particularly in Portugal) one of the highest European birth prevalence, mainly due to the high birth prevalence of medium chain acyl-CoA dehydrogenase deficiency. These results highlight the impact of this group of genetic disorders in this European region. The characterization of mitochondrial proteome, from patients fibroblasts with FAOD, namely multiple acyl-CoA dehydrogenase deficiency (MADD) and long chain acyl-CoA dehydrogenase deficiency (LCHADD), provided a global perspective of the mitochondrial proteome plasticity in these disorders and highlights the main molecular pathways involved in their pathogenesis. Severe MADD forms show an overexpression of chaperones, antioxidant enzymes (MnSOD), and apoptotic proteins. An overexpression of glycolytic enzymes, which reflects cellular adaptation to energy deficiency due to FAO blockage, was also observed. When LCHADD fibroblasts were analysed a metabolic switching to glycolysis was also observed with overexpression of apoptotic proteins and modulation of the antioxidant defence system. Severe LCHADD present increased ROS alongside with up regulation of MnSOD while moderate forms have lower ROS and down-regulation of MnSOD. This probably reflects the role of MnSOD in buffering cellular ROS, maintain them at levels that allow cells to avoid damage and start a cellular response towards survival. When ROS levels are very high cells have to overexpress MnSOD for detoxifying proposes. When severe forms of MADD were compared to moderate forms no major differences were noticed, most probably because ROS levels in moderate MADD are high enough to trigger a response similar to that observed in severe forms. Our data highlights, for the first time, the differences in the modulation of antioxidant defence among FAOD spectrum. Overall, the data reveals the main pathways modulated in FAOD and the importance of ROS levels and antioxidant defence system modulation for disease severity. These results highlight the complex interaction between phenotypic determinants in FAOD that include genetic, epigenetic and environmental factors. The development of future better treatment approaches is dependent on the knowledge on how all these determinants interact towards phenotype.!
Resumo:
Phosphatidylserine (PS) is a member of the class of phospholipids, and is distributed among all cells of mammalians, playing important roles in diverse biological processes, including blood clotting and apoptosis. When externalized, PS is a ligand that is recognized on apoptotic cells. It has been considered that before externalization PS is oxidized and oxPS enhance the recognition by macrophages receptors, however the knowledge about oxidation of PS is still limited. PS, like others phospholipids, has two fatty acyl chains and one polar head group, in this case is the amino acid serine. The modifications in PS structure can occur by oxidation of the unsaturated fatty acyl chains and by glycation of the polar head group, due to free amine group, thus increasing the susceptibility to oxidative events. The main goal of this work was to characterize and identify oxidized and glycoxidized PS, contributing to the knowledge of the biological role of oxidation products of PS, as well as of glycated PS, in immune and inflammatory processes. To achieve this goal, PS standards (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho- L-serine (POPS), 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS), 1- palmitoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine (PLPS) and 1-palmitoyl-2- arachidonoyl-sn-glycero-3-phospho-L-serine (PAPS)) and glycated PS (PAPS and POPS) were induced to oxidize in model systems, using different oxidant reagents: HO• and 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH) . The detailed structural characterization of the oxidative products was performed by ESI-MS and MS/MS coupled to separation techniques such as off line TLC-MS and on line LC-MS, in order to obtained better characterization of the larger number of PS and glycated PS oxidation products. The results obtained in this work allowed to identify several oxidation products of PS and glycated PS with modifications in unsaturated fatty acyl chain. Also, oxidation products formed due to structural changes in the serine polar head with formation of terminal acetamide, terminal hydroperoxyacetaldehyde.and terminal acetic acid (glycerophosphacetic acid, GPAA) were identified. The mass spectrometric specific fragmentation pathway of each type of oxidation product was determined using different mass spectrometry approaches. Based on the identified fragmentation pathways, targeted lipidomic analysis was performed to detect oxidation products modified in serine polar head in HaCaT cell line treated with AAPH. The GPAA was detected in HaCaT cells treated with AAPH to induce oxidative stress, thus confirming that modifications in PS polar head is possible to occur in biological systems. Furthermore, it was found that glycated PS species are more prone to oxidative modifications when compared with non glycated PS. During oxidation of glycated PS, besides the oxidation in acyl chains, new oxidation products due to oxidation of the glucose moiety were identified, including PS advanced glycation end products (PSAGES). To investigate if UVA oxidative stress exerted changes in the lipidome of melanoma cell lines, particularly in PS profile, a lipidomic analysis was performed. The lipid profile was obtained using HILIC-LC-MS and GC-MS analysis of the total lipid extracts obtained from human melanoma cell line (SKMEL- 28) after UVA irradiation at 0, 2 and 24 hours. The results did not showed significant differences in PS content. At molecular level, only PS (18:0:18:1) decreased at the moment of irradiation. The most significant changes in phospholipids content occurred in phosphatidylcholines (PC) and phosphatidylinositol (PI) classes, with an increase of mono-unsaturated fatty acid (MUFA), similarly as observed for the fatty acid analysis. Overall, these data indicate that the observed membrane lipid changes associated with lipogenesis after UVA exposure may be correlated with malignant transformations associated with cancer development and progression. Despite of UVA radiation is associated with oxidative damage, in this work was not possible observe oxidation phospholipids. The anti/pro-inflammatory properties of the oxidized PLPS (oxPLPS) versus non-oxidized PLPS were tested on LPS stimulated RAW 264.7 macrophages. The modulation of intracellular signaling pathways such as NF-kB and MAPK cascades by oxPLPS and PS was also examined in this study. The results obtained from evaluation of anti/pro-inflammatory properties showed that neither PLPS or oxPLPS species activated the macrophages. Moreover only oxidized PLS were found to significantly inhibit NO production and iNOS and il1β gene transcription induced by LPS. The analysis at molecular level showed that this was the result of the attenuation of LPS-induced c-Jun-N-terminal kinase (JNK) and p65 NF-kB nuclear translocation. Overall these data suggest that oxPLPS, but not native PLPS, mitigates pro-inflammatory signaling in macrophages, contributing to containment of inflammation during apoptotic cell engulfment. The results obtained in this work provides new information on the modifications of PS, facilitating the identification of oxidized species in complex samples, namely under physiopathologic conditions and also contributes to a better understanding of the role of oxPS and PS in the inflammatory response, in the apoptotic process and other biological functions.
Resumo:
As algas do género Nannochloropsis são microalgas marinhas que apresentam um perfil bioquímico único, principalmente no que é respeitante a lípidos, e uma vasta gama de compostos bioativos que possibilitam a sua aplicabilidade comercial em várias áreas biotecnológicas, destacando-se a alimentação e nutrição humana, indústria cosmética e farmacêutica, produção de biocombustíveis e a sua utilização em aquacultura. Em aquacultura, são usadas maioritariamente microalgas vivas, cuja produção representa elevados custos. Tem havido assim uma pesquisa de dietas alternativas, entre as quais os concentrados de microalgas se apresentam promissores. Os desafios atuais das empresas produtoras de concentrados de microalgas prendem-se com a conservação e armazenamento destes concentrados. Assim, neste trabalho foi proposto o estudo da influência da refrigeração, congelação e adição de conservantes a PhytoBloom Green Formula®, concentrado de Nannochloropsis sp. comercializado pela empresa Necton S.A., com o objetivo de averiguar a variação de parâmetros bioquímicos e organoléticos com a exposição do concentrado aos diferentes métodos de conservação. Pretendia-se assim observar se estes processos podem ser usados para aumentar o tempo de prateleira do concentrado em estudo. Para tal, foram avaliadas amostras recolhidas em três pontos temporais e analisados os seguintes parâmetros: perfil de ácidos gordos, quantificação de hidroperóxidos lipídicos, quantificação espectrofotométrica de clorofila a e carotenóides, bem como parâmetros organoléticos. Inicialmente, foi efetuada uma avaliação de diferentes parâmetros organoléticos, não se observando variações relevantes entre amostras das diferentes condições. Assim, foi posteriormente realizada a avaliação bioquímica. Primeiramente, foi efetuada a quantificação de ácidos gordos por GC-FID das diferentes amostras, nas quais não se observou diferenças significativas entre as condições experimentais. Foi também efetuado um ensaio de FOX II, que permitiu avaliar o grau de peroxidação lipídica de cada amostra por quantificação de hidroperóxidos lipídicos formados. As amostras nas quais houve adição de conservantes apresentaram um teor menor de hidropéroxidos lipídicos, permitindo inferir que a ação dos conservantes com propriedades antioxidantes permitiu uma melhor conservação da amostra. Quando se determinou a concentração de clorofila a e de carotenóides verificou-se que, em ambos os casos, a congelação conduziu a uma estabilização da concentração destes pigmentos. No entanto, os melhores resultados foram obtidos usando a combinação de congelação com adição de conservantes. Estes resultados, embora promissores, carecem de uma confirmação por um novo estudo, completando com análises com maior rigor e sensibilidade associados, no sentido de se verificar qual o método mais vantajoso para a extensão do tempo de prateleira de PhytoBloom Green Formula®.
Resumo:
As algas do género Nannochloropsis são microalgas marinhas que apresentam um perfil bioquímico único, principalmente no que é respeitante a lípidos, e uma vasta gama de compostos bioativos que possibilitam a sua aplicabilidade comercial em várias áreas biotecnológicas, destacando-se a alimentação e nutrição humana, indústria cosmética e farmacêutica, produção de biocombustíveis e a sua utilização em aquacultura. Em aquacultura, são usadas maioritariamente microalgas vivas, cuja produção representa elevados custos. Tem havido assim uma pesquisa de dietas alternativas, entre as quais os concentrados de microalgas se apresentam promissores. Os desafios atuais das empresas produtoras de concentrados de microalgas prendem-se com a conservação e armazenamento destes concentrados. Assim, neste trabalho foi proposto o estudo da influência da refrigeração, congelação e adição de conservantes a PhytoBloom Green Formula®, concentrado de Nannochloropsis sp. comercializado pela empresa Necton S.A., com o objetivo de averiguar a variação de parâmetros bioquímicos e organoléticos com a exposição do concentrado aos diferentes métodos de conservação. Pretendia-se assim observar se estes processos podem ser usados para aumentar o tempo de prateleira do concentrado em estudo. Para tal, foram avaliadas amostras recolhidas em três pontos temporais e analisados os seguintes parâmetros: perfil de ácidos gordos, quantificação de hidroperóxidos lipídicos, quantificação espectrofotométrica de clorofila a e carotenóides, bem como parâmetros organoléticos. Inicialmente, foi efetuada uma avaliação de diferentes parâmetros organoléticos, não se observando variações relevantes entre amostras das diferentes condições. Assim, foi posteriormente realizada a avaliação bioquímica. Primeiramente, foi efetuada a quantificação de ácidos gordos por GC-FID das diferentes amostras, nas quais não se observou diferenças significativas entre as condições experimentais. Foi também efetuado um ensaio de FOX II, que permitiu avaliar o grau de peroxidação lipídica de cada amostra por quantificação de hidroperóxidos lipídicos formados. As amostras nas quais houve adição de conservantes apresentaram um teor menor de hidropéroxidos lipídicos, permitindo inferir que a ação dos conservantes com propriedades antioxidantes permitiu uma melhor conservação da amostra. Quando se determinou a concentração de clorofila a e de carotenóides verificou-se que, em ambos os casos, a congelação conduziu a uma estabilização da concentração destes pigmentos. No entanto, os melhores resultados foram obtidos usando a combinação de congelação com adição de conservantes. Estes resultados, embora promissores, carecem de uma confirmação por um novo estudo, completando com análises com maior rigor e sensibilidade associados, no sentido de se verificar qual o método mais vantajoso para a extensão do tempo de prateleira de PhytoBloom Green Formula®.
Resumo:
Mesenchymal stromal cells are adult stem cells found mostly in the bone marrow. They have immunosuppressive properties and they have been successfully applied as biological therapy in several clinical trials regarding autoimmune diseases. Despite the great number of clinical trials, MSCs’ action is not fully understand and there are no identified markers that correlate themselves with the immunomodulatory power. A lipidomic approach can solve some of these problems once lipids are one of the major cells’ components. Therefore, in this study cells’ lipidome was analysed and its deviations were evaluated according to the medium of culture and to the presence of pro-inflammatory stimuli, mimicking physiological conditions in which these cells are used. This was the first study ever made that aimed to analyse the differences in the phospholipid profile between mesenchymal stromal cells non-stimulated and stimulated with proinflammatory stimulus. This analysis was conducted in both cells cultured in medium supplemented with animal serum and in cells cultured in a synthetic medium. In cells cultured in the standard medium the levels of phosphatidylcholine (PC) species with shorter fatty acids (FAs) acyl chains decreased under pro-inflammatory stimuli. The level of PC(40:6) also decreased, which may be correlated with enhanced levels of lysoPC (LPC)(18:0) - an anti-inflammatory LPC - observed in cells subjected to TNF-α and IFN-γ. Simultaneously, the relative amounts of PC(36:1) and PC(38:4) increased. TNF-α and IFN- γ also enhanced the levels of phosphatidylethanolamine PE(40:6) and decreased the levels of PE(38:6). Higher expression of phosphatidylserine PS(36:1) and sphingomyelin SM(34:0) along with a decrease in PS(38:6) levels were observed. However, in cells cultured in a synthetic medium, TNF-α and IFN-γ only enhanced the levels of PS(36:1). These results indicate that lipid metabolism and signaling is modulated during mesenchymal stromal cells action.
Resumo:
Rapid and specific detection of foodborne bacteria that can cause food spoilage or illness associated to its consumption is an increasingly important task in food industry. Bacterial detection, identification, and classification are generally performed using traditional methods based on biochemical or serological tests and the molecular methods based on DNA or RNA fingerprints. However, these methodologies are expensive, time consuming and laborious. Infrared spectroscopy is a reliable, rapid, and economic technique which could be explored as a tool for bacterial analysis in the food industry. In this thesis it was evaluated the potential of IR spectroscopy to study the bacterial quality of foods. In Chapter 2, it was developed a calibration model that successfully allowed to predict the bacterial concentration of naturally contaminated cooked ham samples kept at refrigeration temperature during 8 days. In this part, it was developed the methodology that allowed the best reproducibility of spectra from bacteria colonies with minimal sample preparation, which was used in the subsequent work. Several attempts trying different resolutions and number of scans in the IR were made. A spectral resolution of 4 cm-1, with 32 scans were the settings that allowed the best results. Subsequently, in Chapter 3, it was made an attempt to identify 22 different foodborne bacterial genera/species using IR spectroscopy coupled with multivariate analysis. The principal component analysis, used as an exploratory technique, allowed to form distinct groups, each one corresponding to a different genus, in most of the cases. Then, a hierarchical cluster analysis was performed to further analyse the group formation and the possibility of distinction between species of the same bacterial genus. It was observed that IR spectroscopy not only is suitable to the distinction of the different genera, but also to differentiate species of the same genus, with the simultaneous use of principal component analysis and cluster analysis techniques. The utilization of IR spectroscopy and multivariate statistical analysis were also investigated in Chapter 4, in order to confirm the presence of Listeria monocytogenes and Salmonella spp. isolated from contaminated foods, after growth in selective medium. This would allow to substitute the traditional biochemical and serological methods that are used to confirm these pathogens and that delay the obtainment of the results up to 2 days. The obtained results allowed the distinction of 3 different Listeria species and the distinction of Salmonella spp. from other bacteria that can be mistaken with them. Finally, in chapter 5, high pressure processing, an emerging methodology that permits to produce microbiologically safe foods and extend their shelf-life, was applied to 12 foodborne bacteria to determine their resistance and the effects of pressure in cells. A treatment of 300 MPa, during 15 minutes at room temperature was applied. Gram-negative bacteria were inactivated to undetectable levels and Gram-positive showed different resistances. Bacillus cereus and Staphylococcus aureus decreased only 2 logs and Listeria innocua decreased about 5 logs. IR spectroscopy was performed in bacterial colonies before and after HPP in order to investigate the alterations of the cellular compounds. It was found that high pressure alters bands assigned to some cellular components as proteins, lipids, oligopolysaccharides, phosphate groups from the cell wall and nucleic acids, suggesting disruption of the cell envelopes. In this work, bacterial quantification and classification, as well as assessment of cellular compounds modification with high pressure processing were successfully performed. Taking this into account, it was showed that IR spectroscopy is a very promising technique to analyse bacteria in a simple and inexpensive manner.
Resumo:
Nesta tese, realizada no âmbito do Programa Doutoral em Química da Universidade de Aveiro, foram desenvolvidas duas famílias de receptores sintéticos: macrocíclicos baseados na plataforma tetraazacalix[2]areno[2]triazina; e acíclicos construídos a partir de diaminas simples. A plataforma macrocíclica foi decorada nos átomos de azoto em ponte com unidades de reconhecimento molecular contendo fragmentos com grupos amida para o reconhecimento de aniões ou com grupos ácidos carboxílicos para a coordenação de metais de transição. Os receptores acíclicos foram obtidos por acoplamento de diaminas (etilenodiamina, orto-fenilenodiamina ou 2-aminobenzilamina) com uma unidade lipofílica incorporando um anel heterocíclico (derivados de oxadiazole ou furano) e com um derivado isocianato. Estas moléculas assimétricas com um grupo amida e um grupo ureia como unidades de reconhecimento molecular foram avaliadas como receptores e transportadores transmembranares de aniões biologicamente relevantes (Cl- e HCO3-). Os resultados experimentais obtidos serão descritos ao longo de três capítulos, após um primeiro capítulo bibliográfico. No Capítulo 1 começa-se por fazer uma revisão bibliográfica sucinta sobre o desenvolvimento recente de receptores funcionais baseados em azacalixarenos bem como das suas aplicações, designadamente no reconhecimento molecular. Numa segunda parte apresenta-se uma revisão sucinta de receptores derivados de (tio)ureias, relacionados com os receptores sintetizados no âmbito desta tese e com propriedades de reconhecimento e transporte transmembranar de aniões. No Capítulo 2 reporta-se uma série de macrociclos novos com os átomos de azoto em ponte de tetraazacalix[2]areno[2]triazina funcionalizados com bromoacetato de metilo. Foram preparados três novos macrociclos com quatro grupos éster, como braços pendentes, a partir de percursores tetraazacalix[2]areno[2]triazina com os anéis de triazina substituídos com cloro, metilamina ou hexilamina. Os grupos acetato foram hidrolisados em condições básicas, tendo cada um dos derivados dialquilamina originado um composto com quatro grupo carboxílicos, enquanto o análogo diclorado originou uma mistura de compostos com dois grupos carboxílico e com os átomos de cloro substituídos por grupos hidroxilo. Subsequentemente, as propriedades de coordenação dos derivados alquilamina para cobre(II) foram avaliadas por espectroscopia de UV-Vis, tendo-se obtido constantes de estabilidades semelhantes (logk ≈ 6,7). No Capítulo 3 descrevem-se três macrociclos obtidos através da funcionalização dos átomos de azoto em ponte de tetraazacalix[2]areno[2]triazina com grupos amida derivados de N-Boc-etilenodiamina, benzilamina e (S)-metilbenzilamina. A afinidade destes receptores para a série de aniões carboxilato (oxalato, malonato, succinato, glutarato, diglicolato, pimelato, suberato, fumarato, maleato, ftalato e isoftalato) e inorgânicos (Cl-, H2PO4- e SO42-) por titulação de RMN de 1H, foi avaliada. Estes macrociclos conjuntamente com os descritos no Capítulo 2 são os primeiros exemplos reportados na literatura de receptores sintéticos baseados na plataforma de tetraazacalix[2]areno[2]triazina com grupos funcionais nos azotos em ponte. O receptor derivado de N-Boc-etilenodiamina, com oito grupos N-H, entre os três receptores, é o que apresenta maior afinidade para os aniões estudados. No Capítulo 4 é descrita a síntese 59 compostos acíclicos (vide supra) obtidos em três passos de síntese com bons rendimentos. No design desta biblioteca de moléculas a afinidade para aniões dos grupos ureia foi modelada pela inserção de diferentes substituintes arilo ou alquilo, com propriedades electrónicas distintas. A introdução destes grupos em conjugação com um anel de oxadiazole ou furano permitiu também modelar a lipofília destes compostos. A afinidade destes receptores para aniões cloreto e bicarbonato, e em alguns casos para fumarato e maleato, foi investigada por titulação de RMN de 1H. Estes compostos apresentaram constantes de associações compatíveis com o transporte transmembranar de cloreto. Por outro lado estes receptores apresentaram afinidades elevadas para fumarato e maleato, com seletividade para este último. São também discutidos os resultados dos ensaios de transporte de cloreto por estes receptores através de vesículas de em POPC. No Capítulo 5 encontram-se as conclusões gerais desta tese de Doutoramento. No Capitulo 6 encontram-se os dados espectroscópicos e os restantes detalhes experimentais para todos os compostos sintetizados.
Resumo:
Cachexia is a complex syndrome characterized by severe weight loss frequently observed in cancer patients and associated with poor prognosis. Cancer cachexia is also related to modifications in cardiac muscle structure and metabolism leading to cardiac dysfunction. In order to better understand the cardiac remodeling induced by bladder cancer and the impact of exercise training after diagnosis on its regulation, we used an animal model of bladder cancer induced by exposition to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in the drinking water. Healthy animals and previously BBN exposed animals were submitted to a training program in a treadmill at a speed of 20m/min, 60 min/day, 5 days/week during 13 weeks. At the end of the protocol, animals exposed to BBN presented a significant decrease of body weight, in comparison with control groups, supporting the presence of cancer cachexia. Morphological analysis of the cardiac muscle sections revealed the presence of fibrosis and a significant decrease of cardiomyocyte’s cross-sectional area, suggesting the occurrence of cardiac dysfunction associated with bladder cancer. These modifications were accompanied by heart metabolic remodeling characterized by a decreased fatty acid oxidation given by diminished levels of ETFDH and of complex II subunit from the respiratory chain. Exercise training promoted an increment of connexin 43, a protein involved in cardioprotection, and of c-kit, a protein present in cardiac stem cells. These results suggest an improved heart regenerative capacity induced by exercise training. In conclusion, endurance training seems an attractive non-pharmacological therapeutic option for the management of cardiac dysfunction in cancer cachexia.
Resumo:
Photodegradation is considered to be one of the most important processes of elimination of pharmaceutical drugs from natural water matrices. The high consumption and discharge of these substances, in particular antidepressants, to the aquatic environment supports the need to study degradation processes. This dissertation aimed at studying the direct and indirect photodegradation of sertraline, an antidepressant known for its persistence in the environment, and the evaluation of the influence of environmentally relevant factors in its photodegradation. The photodegradation experiments were developed under simulated solar light and the irradiation times converted to summer sunny days (SSD), an equivalent time in natural environmental conditions. The direct photodegradation was evaluated in solutions of sertraline prepared in ultrapure water and the indirect photodegradation was studied through the addition of photosensitizers (humic substances, Fe(III), nitrates and oxygen). Further irradiation studies were perfomed in aqueous samples collected from two wastewater treatment plants, Vouga river and Ria de Aveiro. The samples were chemically characterized (dissolved organic carbon, nitrates and nitrites and iron determination and UV/Vis spectroscopy). The quantification of sertraline was done by HPLC-UV and photoproducts from direct photodegradation were identified by electrospray mass spectrometry. An observed direct photodegradation rate of sertraline of 0.0062 h-1 was determined, corresponding to a half-life time of 111 h (equivalent to 29 SSD). A significant influence of photosensitizers was observed, the best results being achieved in irradiations of sertraline with humic acids, obtaining a half-life time of 12 h. This was attributed to the hydrophobicity of this substance and higher absortivity in the UV/Vis wavelength, which promote processes of indirect photodegradation. The degradation of sertraline in natural samples was also enhanced comparatively to the direct photodegradation, achieving half-life times between 10 and 25h; the best results were achieved in samples from the primary treatment of a wastewater treatment plant and Ria de Aveiro, with half-life times of 10 and 16 h, respectively. A total of six photoproducts formed during the direct photodegradation of sertraline were identified, three of which were not yet identified in the literature. The main factors contributing to the degradation of sertraline were analysed but this was not fully accomplished, requiring further studies of the composition of the natural matrices and the combined influence of distinct photosensitizers during the irradiation. Nevertheless, it was concluded that the photodegradation of sertraline is greatly influenced by indirect photodegradation processes, promoted by the presence of photosensitizers.