24 resultados para Óxido de titânio
Resumo:
During the last few decades, Metal-Organic Frameworks (MOFs), also known as Coordination Polymers, have attracted worldwide research attentions due to their incremented fascinating architectures and unique properties. These multidimensional materials have been potential applications in distinct areas: gas storage and separation, ion exchange, catalysis, magnetism, in optical sensors, among several others. The MOF research group at the University of Aveiro has prepared MOFs from the combination of phosphonate organic primary building units (PBUs) with, mainly, lanthanides. This thesis documents the last findings in this area involving the synthesis of multidimensional MOFs based on four di- or tripodal phosphonates ligands. The organic PBUs were designed and prepared by selecting and optimizing the best reaction conditions and synthetic routes. The self-assembly between phosphonate PBUs and rare-earths cations led to the formation of several 1D, 2D and 3D families of isotypical MOFs. The preparation of these materials was achieved by using distinct synthetic approaches: hydro(solvo)thermal, microwave- and ultrasound-assisted, one-pot and ionothermal synthesis. The selection of the organic PBUs showed to have an important role in the final architectures: while flexible phosphonate ligands afforded 1D, 2D and dense 3D structures, a large and rigid organic PBU isolated a porous 3D MOF. The crystal structure of these materials was successfully unveiled by powder or single-crystal X-ray diffraction. All multidimensional MOFs were characterized by standard solid-state techniques (FT-IR, electron microscopy (SEM and EDS), solid-state NMR, elemental and thermogravimetric analysis). Some MOF materials exhibited remarkable thermal stability and robustness up to ca. 400 ºC. The intrinsic properties of some MOFs were investigated. Photoluminescence studies revealed that the selected organic PBUs are suitable sensitizers of Tb3+ leading to the isolation of intense green-emitting materials. The suppression of the O−H quenchers by deuteration or dehydration processes improves substantially the photoluminescence of the optically-active Eu3+-based materials. Some MOF materials exhibited high heterogeneous catalytic activity and excellent regioselectivity in the ring-opening reaction of styrene oxide (PhEtO) with methanol (100% conversion of PhEtO at 55 ºC for 30 min). The porous MOF material was employed in gas separation processes. This compound showed the ability to separate propane over propylene. The ionexchanged form of this material (containing K+ cations into its network) exhibited higher affinity for CO2 being capable to separate acetylene over this environment non-friendly gas.
Resumo:
Directionally solidified zirconia-based eutectic (DSE) fibres were obtained using the laser floating zone (LFZ) method. Two systems were investigated: zirconia-barium zirconate and zirconia-mullite. The purpose was to take advantage of zirconia properties, particularly as an ionic conductor and a mechanical rein-forcement phase. The influence of processing conditions in the structural and microstructural characteristics and their consequences on the electrical and mechanical behaviour were the focus of this thesis. The novel zirconia-barium zirconate eutectic materials were developed in order to combine oxygen ionic conduction through zirconia with protonic conduction from barium zirconate, promoting mixed ionic conduction behaviour. The mi-crostructure of the fibres comprises two alternated regions: bands having coarser zirconia-rich microstructure; and inter-band regions changing from a homogeneous coupled eutectic, at the lowest pulling rate, to columnar colony microstructure, for the faster grown fibres. The bands inter-distance increases with the growth rate and, at 300 mm/h, zirconia dendrites develop enclosed in a fine-interpenetrated network of 50 vol.% ZrO2-50 vol.% BaZrO3. Both phases display contiguity without interphase boundaries, according to impedance spec-troscopy data. Yttria-rich compositions were considered in order to promote the yttrium incorporation in both phases, as revealed by Raman spectroscopy and corroborated by the elemental chemical analysis in energy dispersive spectros-copy. This is a mandatory condition to attain simultaneous contribution to the mixed ionic conduction. Such results are supported by impedance spectrosco-py measurements, which clearly disclose an increase of total ionic conduction for lower temperatures in wet/reduction atmospheres (activation energies of 35 kJ/mol in N2+H2 and 48 kJ/mol in air, in the range of 320-500 ºC) compared to the dry/oxidizing conditions (attaining values close to 90 kJ/mol, above 500 ºC). At high temperatures, the proton incorporation into the barium zirconate is un-favourable, so oxygen ion conduction through zirconia prevails, in dry and oxi-dizing environments, reaching a maximum of 1.3x10-2 S/cm in dry air, at ~1000 ºC. The ionic conduction of zirconia was alternatively combined with another high temperature oxygen ion conductor, as mullite, in order to obtain a broad elec-trolytic domain. The growth rate has a huge influence in the amount of phases and microstructure of the directionally solidified zirconia-mullite fibres. Their microstructure changes from planar coupled eutectic to dendritic eutectic mor-phology, when the growth rate rises from 1 to 500 mm/h, along with an incre-ment of tetragonal zirconia content. Furthermore, high growth rates lead to the development of Al-Si-Y glassy phase, and thus less mullite amount, which is found to considerably reduce the total ionic conduction of as-grown fibres. The reduction of the glassy phase content after annealing (10h; 1400 ºC) promotes an increase of the total ionic conduction (≥0.01 S/cm at 1370 °C), raising the mullite and tetragonal zirconia contents and leading to microstructural differ-ences, namely the distribution and size of the zirconia constituent. This has important consequences in conductivity by improving the percolation pathways. A notable increase in hardness is observed from 11.3 GPa for the 10 mm/h pulled fibre to 21.2 GPa for the fibre grown at 500 mm/h. The ultra-fine eutectic morphology of the 500 mm/h fibres results in a maximum value of 534 MPa for room temperature bending strength, which decreases to about one-fourth of this value at high temperature testing (1400 ºC) due to the soft nature of the glassy-matrix.
Resumo:
The main purpose of this PhD thesis was to provide convincing demonstration for a breakthrough concept of pyroelectrolysis at laboratory scale. One attempted to identify fundamental objections and/or the most critical constraints, to propose workable concepts for the overall process and for feasible electrodes, and to establish the main requirements on a clearer basis. The main effort was dedicated to studying suitable anode materials to be developed for large scale industrial units with molten silicate electrolyte. This concept relies on consumable anodes based on iron oxides, and a liquid Fe cathode, separated from the refractory materials by a freeze lining (solid) layer. In addition, one assessed an alternative concept of pyroelectrolysis with electron blocking membranes, and developed a prototype at small laboratory scale. The main composition of the molten electrolyte was based on a magnesium aluminosilicate composition, with minimum liquidus temperature, and with different additions of iron oxide. One studied the dynamics of devitrification of these melts, crystallization of iron oxides or other phases, and Fe2+/Fe3+ redox changes under laser zone melting, at different pulling rates. These studies were intended to provide guidelines for dissolution of raw materials (iron oxides) in the molten electrolyte, to assess compatibility with magnetite based consumable anodes, and to account for thermal gradients or insufficient thermal management in large scale cells. Several laboratory scale prototype cells were used to demonstrate the concept of pyroelectrolysis with electron blocking, and to identify the most critical issues and challenges. Operation with and without electron blocking provided useful information on transport properties of the molten electrolyte (i.e., ionic and electronic conductivities), their expected dependence on anodic and cathodic overpotentials, limitations in faradaic efficiency, and onset of side electrochemical reactions. The concept of consumable anodes was based on magnetite and derived spinel compositions, for their expected redox stability at high temperatures, even under oxidising conditions. Spinel compositions were designed for prospective gains in refractoriness and redox stability in wider ranges of conditions (T, pO2 and anodic overpotentials), without excessive penalty for electrical conductivity, thermomechanical stability or other requirements. Composition changes were also mainly based on components of the molten aluminosilicate melt, to avoid undue contamination and to minimize the dissolution rate of consumable anodes. Additional changes in composition were intended for prospective pyroelectrolysis of Fe alloys, with additions of different elements (Cr, Mn, Ni, Ti).
Resumo:
Os estudos de maquinabilidade de biomateriais e outros materiais aplicados na área médica são extensos. Todavia, muitos destes estudos recorrem a modelos de geometria regular e operações elementares de maquinagem. Relativamente a estas, os estudos académicos atualmente disponíveis mostram que a tecnologia preferencial é o torneamento, opção que se fundamenta na simplicidade de análise (corte ortogonal). Saliente-se ainda que, neste contexto, a liga de titânio Ti-6Al-4V constitui o biomaterial mais utilizado. Numa perspetiva complementar, refira-se que as publicações científicas evidenciam que a informação disponível sobre a fresagem Ti-6Al-4V não é muito extensa e a do Co-28Cr-6Mo é quase inexistente. A presente dissertação enquadra-se neste domínio e representa mais uma contribuição para o estudo da maquinabilidade das ligas de Titânio e de crómio-cobalto. A aplicação de operações de maquinagem complexas, através do recurso a programas informáticos de fabrico assistido por computador (CAM), em geometrias complexas, como é o caso das próteses femorais anatómicas, e o estudo comparativo da maquinabilidade das ligas Co-28Cr-6Mo e Ti-6Al-4V, constituem os objetivos fundamentais deste trabalho de doutoramento. Neste trabalho aborda-se a problemática da maquinabilidade das ligas metálicas usadas nos implantes ortopédicos, nomeadamente as ligas de titânio, de crómiocobalto e os aços Inoxidáveis. Efetua-se ainda um estudo da maquinagem de uma prótese femoral com uma forma geométrica complexa, onde as operações de corte foram geradas recorrendo às tecnologias de fabrico assistido por computador (CAD/CAM). Posteriormente, procedeu-se ao estudo da maquinabilidade das duas ligas usadas neste trabalho, dando uma atenção particular à determinação das forças de corte para diferentes velocidades de corte. Para além da monitorização da evolução da força de corte, o desgaste das ferramentas, a dureza e a rugosidade foram avaliadas, em função da velocidade de corte imposta. Por fim, com base nas estratégias de maquinagem adotadas, analisa-se a maquinabilidade e selecionam-se os parâmetros de corte mais favoráveis para as ligas de Titânio e Crómio-cobalto. Os resultados obtidos mostram que a liga de crómio-cobalto induz maior valor de força de corte do que a liga de titânio. Observa-se um aumento progressivo das forças de corte quando a velocidade de corte aumenta, até atingir o valor máximo para a velocidade de corte de 80m/min, após a qual, a força de corte tende a diminuir. Apesar do fabricante das ferramentas recomendar a velocidade de corte de 50 m/min para ambos os materiais, conclui-se que a velocidade de corte de 65 m/min induz o mesmo desgaste na ferramenta de corte no caso da liga de titânio, e menor desgaste no caso da liga de crómio-cobalto.
Resumo:
One of the more promising possibilities for future “green” electrical energy generation is the protonic ceramic fuel cell (PCFC). PCFCs offer a low-pollution technology to generate electricity electrochemically with high efficiency. Reducing the operating temperature of solid oxide fuel cells (SOFCs) to the 500-700°C range is desirable to reduce fabrication costs and improve overall longevity. This aim can be achieved by using protonic ceramic fuel cells (PCFCs) due to their higher electrolyte conductivity at these temperatures than traditional ceramic oxide-ion conducting membranes. This thesis deals with the state of the art Ni-BaZr0.85Y0.15O3-δ cermet anodes for PCFCs. The study of PCFCs is in its initial stage and currently only a few methods have been developed to prepare suitable anodes via solid state mechanical mixing of the relevant oxides or by combustion routes using nitrate precursors. This thesis aims to highlight the disadvantages of these traditional methods of anode preparation and to, instead, offer a novel, efficient and low cost nitrate free combustion route to prepare Ni-BaZr0.85Y0.15O3-δ cermet anodes for PCFCs. A wide range of techniques mainly X-ray diffraction (XRD), scanning electron microscopy (SEM), environmental scanning electron microscopy, (ESEM) and electrochemical impedance spectroscopy (EIS) were employed in the cermet anode study. The work also offers a fundamental examination of the effect of porosity, redox cycling behaviour, involvement of proton conducting oxide phase in PCFC cermet anodes and finally progresses to study the electrochemical performance of a state of the art anode supported PCFC. The polarisation behaviour of anodes has been assessed as a function of temperature (T), water vapour (pH2O), hydrogen partial pressures (pH2) and phase purity for electrodes of comparable microstructure. The impedance spectra generally show two arcs at high frequency R2 and low frequency R3 at 600 °C, which correspond to the electrode polarisation resistance. Work shows that the R2 and R3 terms correspond to proton transport and dissociative H2 adsorption on electrode surface, respectively. The polarization resistance of the cermet anode (Rp) was shown to be significantly affected by porosity, with the PCFC cermet anode with the lowest porosity exhibiting the lowest Rp under standard operating conditions. This result highlights that porogens are not required for peak performance in PCFC anodes, a result contrary to that of their oxide-ion conducting anode counterparts. In-situ redox cycling studies demonstrate that polarisation behaviour was drastically impaired by redox cycling. In-situ measurements using an environmental scanning electron microscopy (ESEM) reveal that degradation proceeds due to volume expansion of the Ni-phase during the re-oxidation stage of redox cycling.The anode supported thin BCZY44 based protonic ceramic fuel cell, formed using a peak performing Ni-BaZr0.85Y0.15O3-δ cermet anode with no porogen, shows promising results in fuel cell testing conditions at intermediate temperatures with good durability and an overall performance that exceeds current literature data.
Resumo:
The present work aimed to explore the potential of new nanocomposites based on carbon nanostructures and metal nanoparticles for the detection of biomolecules through surface enhanced Raman scattering (SERS). In a first step, polyvinyl alcohol composites were prepared incorporating silver nanoparticles by two different reduction procedures. At first without introduction of carbon nanostructures. These composites showed good results for the SERS identification of nucleic acids. Next, the synthesis and characterization of graphene oxide was studied to be used in the preparation of silver and gold nanocomposites. The reduction of this nanomaterial with different chemical agents was explored, since its reduction degree may be a determinant factor for the application envisaged (biomolecules interaction). The preparation of the nanocomposites with silver and gold was performed with different reducing agents. The SERS activity of these new nanocomposites was then explored in the presence of different analytes, varying the experimental conditions for Raman spectra acquisition. It was interesting to verify that the silver containing nanocomposites presented the particularity to intensify the graphene D and G bands. It is also important to highlight that a new eco-friendly reducing agent was tested for the synthesis of the graphene oxide composites, an Eucalyptus Globulus extract. Other variable introduced was the preparation of gold nanostars synthesized with hydroxylamine in the presence of graphene oxide, which allowed the preparation of a new nanocomposite with SERS potential. Fibrous membranes were also prepared by electrospinning with the aim to prepare SERS supports with adequate topography and porosity for the formation of nanoparticles agglomerates for the creation of the so-called hot-spots and also to allow the penetration of the analyte molecules. The polymers polyvinyl alcohol and polyacrylonitrile were selected for electrospinning. Using this technique, electrospun mantles with silver and gold nanoparticles and nanocomposites were prepared. Several variables were studied, such as the introduction of the nano-fillers during the electrospinning process, later deposition of the nano-fillers on the simple electrospun polymeric fibres and surface functionalization of the simple polymeric membranes to link the nano-fillers. At last, the potentialities of using carbon nanotubes forests, produced by chemical vapor deposition and coated with gold film by sputtering, as new SERS substrates were explored. It was found that the SERS detection of DNA bases and ADN itself is possible using these substrates.
Resumo:
Solid oxide fuel (SOFCs) and electrolyzer (SOECs) cells have been promoted as promising technologies for the stabilization of fuel supply and usage in future green energy systems. SOFCs are devices that produce electricity by the oxidation of hydrogen or hydrocarbon fuels with high efficiency. Conversely, SOECs can offer the reverse reaction, where synthetic fuels can be generated by the input of renewable electricity. Due to this similar but inverse nature of SOFCs and SOECs, these devices have traditionally been constructed from comparable materials. Nonetheless, several limitations have hindered the entry of SOFCs and SOECs into the marketplace. One of the most debilitating is associated with chemical interreactions between cell components that can lead to poor longevities at high working temperatures and/or depleted electrochemcial performance. Normally such interreactions are countered by the introduction of thin, purely ionic conducting, buffer layers between the electrode and electrolyte interface. The objective of this thesis is to assess if possible improvements in electrode kinetics can also be obtained by modifying the transport properties of these buffer layers by the introduction of multivalent cations. The introduction of minor electronic conductivity in the surface of the electrolyte material has previously been shown to radically enhance the electrochemically active area for oxygen exchange, reducing polarization resistance losses. Hence, the current thesis aims to extend this knowledge to tailor a bi-functional buffer layer that can prevent chemical interreaction while also enhancing electrode kinetics.The thesis selects a typical scenario of an yttria stabilized zirconia electrolyte combined with a lanthanide containing oxygen electrode. Gadolinium, terbium and praseodymium doped cerium oxide materials have been investigated as potential buffer layers. The mixed ionic electronic conducting (MIEC) properties of the doped-cerium materials have been analyzed and collated. A detailed analysis is further presented of the impact of the buffer layers on the kinetics of the oxygen electrode in SOFC and SOEC devices. Special focus is made to assess for potential links between the transport properties of the buffer layer and subsequent electrode performance. The work also evaluates the electrochemical performance of different K2NiF4 structure cathodes deposited onto a peak performing Pr doped-cerium buffer layer, the influence of buffer layer thickness and the Pr content of the ceria buffer layer. It is shown that dramatic increases in electrode performance can be obtained by the introduction of MIEC buffer layers, where the best performances are shown to be offered by buffer layers of highest ambipolar conductivity. These buffer layers are also shown to continue to offer the bifunctional role to protect from unwanted chemical interactions at the electrode/electrolyte interface.
Resumo:
Phosphatidylserine (PS) is a member of the class of phospholipids, and is distributed among all cells of mammalians, playing important roles in diverse biological processes, including blood clotting and apoptosis. When externalized, PS is a ligand that is recognized on apoptotic cells. It has been considered that before externalization PS is oxidized and oxPS enhance the recognition by macrophages receptors, however the knowledge about oxidation of PS is still limited. PS, like others phospholipids, has two fatty acyl chains and one polar head group, in this case is the amino acid serine. The modifications in PS structure can occur by oxidation of the unsaturated fatty acyl chains and by glycation of the polar head group, due to free amine group, thus increasing the susceptibility to oxidative events. The main goal of this work was to characterize and identify oxidized and glycoxidized PS, contributing to the knowledge of the biological role of oxidation products of PS, as well as of glycated PS, in immune and inflammatory processes. To achieve this goal, PS standards (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho- L-serine (POPS), 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS), 1- palmitoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine (PLPS) and 1-palmitoyl-2- arachidonoyl-sn-glycero-3-phospho-L-serine (PAPS)) and glycated PS (PAPS and POPS) were induced to oxidize in model systems, using different oxidant reagents: HO• and 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH) . The detailed structural characterization of the oxidative products was performed by ESI-MS and MS/MS coupled to separation techniques such as off line TLC-MS and on line LC-MS, in order to obtained better characterization of the larger number of PS and glycated PS oxidation products. The results obtained in this work allowed to identify several oxidation products of PS and glycated PS with modifications in unsaturated fatty acyl chain. Also, oxidation products formed due to structural changes in the serine polar head with formation of terminal acetamide, terminal hydroperoxyacetaldehyde.and terminal acetic acid (glycerophosphacetic acid, GPAA) were identified. The mass spectrometric specific fragmentation pathway of each type of oxidation product was determined using different mass spectrometry approaches. Based on the identified fragmentation pathways, targeted lipidomic analysis was performed to detect oxidation products modified in serine polar head in HaCaT cell line treated with AAPH. The GPAA was detected in HaCaT cells treated with AAPH to induce oxidative stress, thus confirming that modifications in PS polar head is possible to occur in biological systems. Furthermore, it was found that glycated PS species are more prone to oxidative modifications when compared with non glycated PS. During oxidation of glycated PS, besides the oxidation in acyl chains, new oxidation products due to oxidation of the glucose moiety were identified, including PS advanced glycation end products (PSAGES). To investigate if UVA oxidative stress exerted changes in the lipidome of melanoma cell lines, particularly in PS profile, a lipidomic analysis was performed. The lipid profile was obtained using HILIC-LC-MS and GC-MS analysis of the total lipid extracts obtained from human melanoma cell line (SKMEL- 28) after UVA irradiation at 0, 2 and 24 hours. The results did not showed significant differences in PS content. At molecular level, only PS (18:0:18:1) decreased at the moment of irradiation. The most significant changes in phospholipids content occurred in phosphatidylcholines (PC) and phosphatidylinositol (PI) classes, with an increase of mono-unsaturated fatty acid (MUFA), similarly as observed for the fatty acid analysis. Overall, these data indicate that the observed membrane lipid changes associated with lipogenesis after UVA exposure may be correlated with malignant transformations associated with cancer development and progression. Despite of UVA radiation is associated with oxidative damage, in this work was not possible observe oxidation phospholipids. The anti/pro-inflammatory properties of the oxidized PLPS (oxPLPS) versus non-oxidized PLPS were tested on LPS stimulated RAW 264.7 macrophages. The modulation of intracellular signaling pathways such as NF-kB and MAPK cascades by oxPLPS and PS was also examined in this study. The results obtained from evaluation of anti/pro-inflammatory properties showed that neither PLPS or oxPLPS species activated the macrophages. Moreover only oxidized PLS were found to significantly inhibit NO production and iNOS and il1β gene transcription induced by LPS. The analysis at molecular level showed that this was the result of the attenuation of LPS-induced c-Jun-N-terminal kinase (JNK) and p65 NF-kB nuclear translocation. Overall these data suggest that oxPLPS, but not native PLPS, mitigates pro-inflammatory signaling in macrophages, contributing to containment of inflammation during apoptotic cell engulfment. The results obtained in this work provides new information on the modifications of PS, facilitating the identification of oxidized species in complex samples, namely under physiopathologic conditions and also contributes to a better understanding of the role of oxPS and PS in the inflammatory response, in the apoptotic process and other biological functions.
Resumo:
The planar design of solid oxide fuel cell (SOFC) is the most promising one due to its easier fabrication, improved performance and relatively high power density. In planar SOFCs and other solid-electrolyte devices, gas-tight seals must be formed along the edges of each cell and between the stack and gas manifolds. Glass and glass-ceramic (GC), in particular alkaline-earth alumino silicate based glasses and GCs, are becoming the most promising materials for gas-tight sealing applications in SOFCs. Besides the development of new glass-based materials, new additional concepts are required to overcome the challenges being faced by the currently existing sealant technology. The present work deals with the development of glasses- and GCs-based materials to be used as a sealants for SOFCs and other electrochemical functional applications. In this pursuit, various glasses and GCs in the field of diopside crystalline materials have been synthesized and characterized by a wide array of techniques. All the glasses were prepared by melt-quenching technique while GCs were produced by sintering of glass powder compacts at the temperature ranges from 800−900 ºC for 1−1000 h. Furthermore, the influence of various ionic substitutions, especially SrO for CaO, and Ln2O3 (Ln=La, Nd, Gd, and Yb), for MgO + SiO2 in Al-containing diopside on the structure, sintering and crystallization behaviour of glasses and properties of resultant GCs has been investigated, in relevance with final application as sealants in SOFC. From the results obtained in the study of diopside-based glasses, a bilayered concept of GC sealant is proposed to overcome the challenges being faced by (SOFCs). The systems designated as Gd−0.3 (in mol%: 20.62MgO−18.05CaO−7.74SrO−46.40SiO2−1.29Al2O3 − 2.04 B2O3−3.87Gd2O3) and Sr−0.3 (in mol%: 24.54 MgO−14.73 CaO−7.36 SrO−0.55 BaO−47.73 SiO2−1.23 Al2O3−1.23 La2O3−1.79 B2O3−0.84 NiO) have been utilized to realize the bi-layer concept. Both GCs exhibit similar thermal properties, while differing in their amorphous fractions, revealed excellent thermal stability along a period of 1,000 h. They also bonded well to the metallic interconnect (Crofer22APU) and 8 mol% yttrium stabilized zirconium (8YSZ) ceramic electrolyte without forming undesirable interfacial layers at the joints of SOFC components and GC. Two separated layers composed of glasses (Gd−0.3 and Sr−0.3) were prepared and deposited onto interconnect materials using a tape casting approach. The bi-layered GC showed good wetting and bonding ability to Crofer22APU plate, suitable thermal expansion coefficient (9.7–11.1 × 10–6 K−1), mechanical reliability, high electrical resistivity, and strong adhesion to the SOFC componets. All these features confirm the good suitability of the investigated bi-layered sealant system for SOFC applications.