117 resultados para whole-cell and single-channel patch-clamp recordings


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freshly dispersed cells from sheep urinary bladder were voltage clamped using the whole cell and inside-out patch-clamp technique. Cibacron and Basilen blue increased outward current in a dose-dependent manner with a half-maximal response at 10(-5) M. Suramin, in concentrations to 10(-3) M, had no such effect. The Cibacron blue response was abolished in Ca2+-free physiological salt solution, suggesting that it was acting on a Ca2+-dependent current. Similarly, the Cibacron blue-sensitive current was significantly attenuated by charybdotoxin. Cibacron blue did not modulate inward current nor were its effects modified by caffeine or heparin, suggesting that its effect on outward current was not secondary to an increase in intracellular Ca2+. Application of 10(-4) M Cibacron blue to the inside membrane of excised patches caused a rapid increase in open probability of a large-conductance (300 pS) K+ channel. These results suggest that Cibacron blue is a potent activator of a Ca2+-dependent outward current in bladder smooth muscle cells in addition to its action as a purinergic blocker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole-cell and inside-out patch-clamp techniques were used to assess the action of a well-known dye, Evans blue, on membrane currents in bladder isolated smooth muscle cells from sheep. In whole cells Evans blue dose-dependently increased the outward current by up to fivefold. In contrast, Evans blue had no effect on inward Ca2+ current. The effect on outward current was abolished or reduced if the cells were bathed in Ca2+-free solution, iberiotoxin (5 x 10(-8) M), or charybdotoxin (5 x 10(-8) M), but was unaffected by externally applied caffeine (5 mM) or in cells exposed to heparin (1 mg/ml) via the patch pipette. In inside-out patches bathed in a Ca2+ concentration of 5 x 10(-7) M, Evans blue (10(-4) M) increased the open probability of large-conductance (298-pS) Ca2+-dependent K+ channels (BK channels), shifting the half maximal-activation voltage by -70 mV. We conclude that Evans blue dye acts as an opener of BK channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100?µM) inhibited 44?±?0.05% (mean?±?s.e.m., n?=?11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15?µM at -150 ?mV to 148?µM at -75 ?mV in 120 ?mM external K(+). This current was insensitive to 10?µM glybenclamide. A component of whole-cell current was sensitive to 150?µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To characterize the biophysical, pharmacologic, and functional properties of the Ca(2+)-activated Cl(-) current in retinal arteriolar myocytes. METHODS: Whole-cell perforated patch-clamp recordings were made from myocytes within intact isolated arteriolar segments. Arteriolar tone was assessed using pressure myography. RESULTS: Depolarizing of voltage steps to -40 mV and greater activated an L-type Ca(2+) current (I(Ca(L))) that was followed by a sustained current. Large tail currents (I(tail)) were observed on stepping back to -80 mV. The sustained current and I(tail) reversed close to 0 mV in symmetrical Cl(-) concentrations. The ion selectivity sequence for I(tail) was I(-)> Cl(-)> glucuronate. Outward I(tail) was sensitive to the Cl(-) channel blockers 9-anthracene-carboxylic acid (9-AC; 1 mM), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS; 1 mM), and disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS; 1 mM), but only DIDS produced a substantial (78%) block of inward tail currents at -100 mV. I(tail) was decreased in magnitude when the normal bathing medium was substituted with Ca(2+)-free solution or if I(Ca(L)) was inhibited by 1 microM nimodipine. Caffeine (10 mM) produced large transient currents that reversed close to the Cl(-) equilibrium potential and were blocked by 1 mM DIDS or 100 microM tetracaine. DIDS had no effect on basal vascular tone in pressurized arterioles but dramatically reduced the level of vasoconstriction observed in the presence of 10 nM endothelin-1. CONCLUSIONS: Retinal arteriolar myocytes have I(Cl(Ca)), which may be activated by Ca(2+) entry through L-type Ca(2+) channels or Ca(2+) release from intracellular stores. This current appears to contribute to agonist-induced retinal vasoconstriction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4ß by µ-opioid receptors. ML204 inhibited TRPC4ß-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 µm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4ß currents activated through either µ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTP?S), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 µm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTP?S, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by L-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscarinic acetylcholine receptors (mAChRs) provide viable targets for the treatment of multiple central nervous system disorders. We have used cheminformatics and medicinal chemistry to develop new, highly selective M4 allosteric potentiators. VU10010, the lead compound, potentiates the M4 response to acetylcholine 47-fold while having no activity at other mAChR subtypes. This compound binds to an allosteric site on the receptor and increases affinity for acetylcholine and coupling to G proteins. Whole-cell patch clamp recordings revealed that selective potentiation of M4 with VU10010 increases carbachol-induced depression of transmission at excitatory but not inhibitory synapses in the hippocampus. The effect was not mimicked by an inactive analog of VU10010 and was absent in M4 knockout mice. Selective regulation of excitatory transmission by M4 suggests that targeting of individual mAChR subtypes could be used to differentially regulate specific aspects of mAChR modulation of function in this important forebrain structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies suggest that selective antagonists of specific subtypes of muscarinic acetylcholine receptors (mAChRs) may provide a novel approach for the treatment of certain central nervous system (CNS) disorders, including epileptic disorders, Parkinson's disease, and dystonia. Unfortunately, previously reported antagonists are not highly selective for specific mAChR subtypes, making it difficult to definitively establish the functional roles and therapeutic potential for individual subtypes of this receptor subfamily. The M 1 mAChR is of particular interest as a potential target for treatment of CNS disorders. We now report the discovery of a novel selective antagonist of M-1 mAChRs, termed VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)benzo[c][1,2,5]thiadiazole-4-sulfonamide]. Equilibrium radioligand binding and functional studies demonstrate a greater than 75-fold selectivity of VU0255035 for M-1 mAChRs relative to M-2-M-5. Molecular pharmacology and mutagenesis studies indicate that VU0255035 is a competitive orthosteric antagonist of M-1 mAChRs, a surprising finding given the high level of M-1 mAChR selectivity relative to other orthosteric antagonists. Whole-cell patch-clamp recordings demonstrate that VU0255035 inhibits potentiation of N-methyl-D-aspartate receptor currents by the muscarinic agonist carbachol in hippocampal pyramidal cells. VU0255035 has excellent brain penetration in vivo and is efficacious in reducing pilocarpine-induced seizures in mice. We were surprised to find that doses of VU0255035 that reduce pilo-carpine-induced seizures do not induce deficits in contextual freezing, a measure of hippocampus-dependent learning that is disrupted by nonselective mAChR antagonists. Taken together, these data suggest that selective antagonists of M-1 mAChRs do not induce the severe cognitive deficits seen with nonselective mAChR antagonists and could provide a novel approach for the treatment certain of CNS disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phnA gene that encodes the carbon-phosphorus bond cleavage enzyme phosphonoacetate hydrolase is widely distributed in the environment, suggesting that its phosphonate substrate may play a significant role in biogeochemical phosphorus cycling. Surprisingly, however, no biogenic origin for phosphonoacetate has yet been established. To facilitate the search for its natural source we have constructed a whole-cell phosphonoacetate biosensor. The gene encoding the LysR-type transcriptional activator PhnR, which controls expression of the phosphonoacetate degradative operon in Pseudomonas fluorescens 23F, was inserted in the broad-host-range promoter probe vector pPROBE-NT, together with the promoter region of the structural genes. Cells of Escherichia coli DH5a that contained the resultant construct, pPANT3, exhibited phosphonoacetate-dependent green fluorescent protein fluorescence in response to threshold concentrations of as little as 0.5 µM phosphonoacetate, some 100 times lower than the detection limit of currently available non-biological analytical methods; the pPANT3 biosensor construct in Pseudomonas putida KT2440 was less sensitive, although with shorter response times. From a range of other phosphonates and phosphonoacetate analogues tested, only phosphonoacetaldehyde and arsonoacetate induced green fluorescent protein fluorescence in the E. coli DH5a (pPANT3) biosensor, although at much-reduced sensitivities (50 µM phosphonoacetaldehyde and 500 µM arsonoacetate).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accessing chirally pure cis-diols from arenes using micro-organisms over-expressing toluene dioxygenase (TDO) is now well established, but the conversions remain low for the more toxic and volatile substrates. For such arenes, improved production has already been achieved in the presence of hydrophobic non-toxic ionic liquids (ILs) acting in the form of a reservoir for the arene substrate. Yet, the costs associated with such ILs require extensive process development to render them viable. Herein, we show that optimization of the hydrophobic IL's cationic moiety and of the IL's concentration are key to enhanced conversion yielding between a 2-5 fold yield increase in the conversion of four haloarenes (Ph-X; X = F, Cl, Br, I). Additionally, we report that hydrophilic imidazolium-based ILs offer opportunities to achieve similarly high yielding biotransformations, with further improved reaction rates (<6 h), and this at very low ILs' concentrations (0.0015 VIL/Vaq). We also demonstrate that the increased biotransformations are due to these ILs being inhibitors of cellular respiration processes and thus favoring the shunting of NADH and O2 towards the overexpressed biocatalytic process. © 2014 the Partner Organisations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective cell recognition and capture has recently attracted significant interest due to its potential importance for clinical, diagnostic, environmental, and security applications. Current methods for cell isolation from complex samples are largely dependent on cell size and density, with limited application scope as many of the target cells do not exhibit appreciable differences in this respect. The most recent and forthcoming developments in the area of selective recognition and capture of whole cells, based on natural receptors, as well as synthetic materials utilising physical and chemical properties of the target cell or microorganism, are highlighted. Particular focus is given to the development of cell complementary surfaces using the cells themselves as templating agents, by means of molecular imprinting, and their combination with sensing platforms for rapid cell detection in complex media. The benefits and challenges of each approach are discussed and a perspective of the future of this research area is given.