11 resultados para whole-cell and single-channel patch-clamp recordings

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

My thesis studies how people pay attention to other people and the environment. How does the brain figure out what is important and what are the neural mechanisms underlying attention? What is special about salient social cues compared to salient non-social cues? In Chapter I, I review social cues that attract attention, with an emphasis on the neurobiology of these social cues. I also review neurological and psychiatric links: the relationship between saliency, the amygdala and autism. The first empirical chapter then begins by noting that people constantly move in the environment. In Chapter II, I study the spatial cues that attract attention during locomotion using a cued speeded discrimination task. I found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The more ecologically valid the motion features became (e.g., temporal expansion of each object, spatial depth structure implied by distribution of the size of the objects), the stronger the attentional effects. However, compared to inanimate objects and cues, people preferentially attend to animals and faces, a process in which the amygdala is thought to play an important role. To directly compare social cues and non-social cues in the same experiment and investigate the neural structures processing social cues, in Chapter III, I employ a change detection task and test four rare patients with bilateral amygdala lesions. All four amygdala patients showed a normal pattern of reliably faster and more accurate detection of animate stimuli, suggesting that advantageous processing of social cues can be preserved even without the amygdala, a key structure of the “social brain”. People not only attend to faces, but also pay attention to others’ facial emotions and analyze faces in great detail. Humans have a dedicated system for processing faces and the amygdala has long been associated with a key role in recognizing facial emotions. In Chapter IV, I study the neural mechanisms of emotion perception and find that single neurons in the human amygdala are selective for subjective judgment of others’ emotions. Lastly, people typically pay special attention to faces and people, but people with autism spectrum disorders (ASD) might not. To further study social attention and explore possible deficits of social attention in autism, in Chapter V, I employ a visual search task and show that people with ASD have reduced attention, especially social attention, to target-congruent objects in the search array. This deficit cannot be explained by low-level visual properties of the stimuli and is independent of the amygdala, but it is dependent on task demands. Overall, through visual psychophysics with concurrent eye-tracking, my thesis found and analyzed socially salient cues and compared social vs. non-social cues and healthy vs. clinical populations. Neural mechanisms underlying social saliency were elucidated through electrophysiology and lesion studies. I finally propose further research questions based on the findings in my thesis and introduce my follow-up studies and preliminary results beyond the scope of this thesis in the very last section, Future Directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hair cells from the bull frog's sacculus, a vestibular organ responding to substrate-borne vibration, possess electrically resonant membrane properties which maximize the sensitivity of each cell to a particular frequency of mechanical input. The electrical resonance of these cells and its underlying ionic basis were studied by applying gigohm-seal recording techniques to solitary hair cells enzymatically dissociated from the sacculus. The contribution of electrical resonance to frequency selectivity was assessed from microelectrode recordings from hair cells in an excised preparation of the sacculus.

Electrical resonance in the hair cell is demonstrated by damped membrane-potential oscillations in response to extrinsic current pulses applied through the recording pipette. This response is analyzed as that of a damped harmonic oscillator. Oscillation frequency rises with membrane depolarization, from 80-160 Hz at resting potential to asymptotic values of 200-250 Hz. The sharpness of electrical tuning, denoted by the electrical quality factor, Qe, is a bell-shaped function of membrane voltage, reaching a maximum value around eight at a membrane potential slightly positive to the resting potential.

In whole cells, three time-variant ionic currents are activated at voltages more positive than -60 to -50 mV; these are identified as a voltage-dependent, non-inactivating Ca current (Ica), a voltage-dependent, transient K current (Ia), and a Ca-dependent K current (Ic). The C channel is identified in excised, inside-out membrane patches on the basis of its large conductance (130-200 pS), its selective permeability to Kover Na or Cl, and its activation by internal Ca ions and membrane depolarization. Analysis of open- and closed-lifetime distributions suggests that the C channel can assume at least two open and three closed kinetic states.

Exposing hair cells to external solutions that inhibit the Ca or C conductances degrades the electrical resonance properties measured under current-clamp conditions, while blocking the A conductance has no significant effect, providing evidence that only the Ca and C conductances participate in the resonance mechanism. To test the sufficiency of these two conductances to account for electrical resonance, a mathematical model is developed that describes Ica, Ic, and intracellular Ca concentration during voltage-clamp steps. Ica activation is approximated by a third-order Hodgkin-Huxley kinetic scheme. Ca entering the cell is assumed to be confined to a small submembrane compartment which contains an excess of Ca buffer; Ca leaves this space with first-order kinetics. The Ca- and voltage-dependent activation of C channels is described by a five-state kinetic scheme suggested by the results of single-channel observations. Parameter values in the model are adjusted to fit the waveforms of Ica and Ic evoked by a series of voltage-clamp steps in a single cell. Having been thus constrained, the model correctly predicts the character of voltage oscillations produced by current-clamp steps, including the dependencies of oscillation frequency and Qe on membrane voltage. The model shows quantitatively how the Ca and C conductances interact, via changes in intracellular Ca concentration, to produce electrical resonance in a vertebrate hair cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.

To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.

In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors are pentameric ligand-gated ion channels mediating fast synaptic transmission throughout the peripheral and central nervous systems. They have been implicated in various processes related to cognitive functions, learning and memory, arousal, reward, motor control and analgesia. Therefore, these receptors present alluring potential therapeutic targets for the treatment of pain, epilepsy, Alzheimer’s disease, Parkinson’s disease, Tourette’s syndrome, schizophrenia, anxiety, depression and nicotine addiction. The work detailed in this thesis focuses on binding studies of neuronal nicotinic receptors and aims to further our knowledge of subtype specific functional and structural information.

Chapter 1 is an introductory chapter describing the structure and function of nicotinic acetylcholine receptors as well as the methodologies used for the dissertation work described herein. There are several different subtypes of nicotinic acetylcholine receptors known to date and the subtle variations in their structure and function present a challenging area of study. The work presented in this thesis deals specifically with the α4β2 subtype of nicotinic acetylcholine receptor. This subtype assembles into 2 closely related stoichiometries, termed throughout this thesis as A3B2 and A2B3 after their respective subunit composition. Chapter 2 describes binding studies of select nicotinic agonists on A3B2 and A2B3 receptors determined by whole-cell recording. Three key binding interactions, a cation-π and two hydrogen bonds, were probed for four nicotinic agonists, acetylcholine, nicotine, smoking cessation drug varenicline (Chantix®) and the related natural product cytisine.

Results from the binding studies presented in Chapter 2 show that the major difference in binding of these four agonists to A3B2 and A2B3 receptors lies in one of the two hydrogen bond interactions where the agonist acts as the hydrogen bond acceptor and the backbone NH of a conserved leucine residue in the receptor acts as the hydrogen bond donor. Chapter 3 focuses on studying the effect of modulating the hydrogen bond acceptor ability of nicotine and epibatidine on A3B2 receptor function determined by whole-cell recording. Finally, Chapter 4 describes single-channel recording studies of varenicline binding to A2B3 and A3B2 receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I. The cellular slime mold Dictyostelium discoideum is a simple eukaryote which undergoes a multi-cellular developmental process. Single cell myxamoebae divide vegetatively in the presence of a food source. When the food is depleted or removed, the cells aggregate, forming a migrating pseudoplasmodium which differentiates into a fruiting body containing stalk and spore cells. I have shown that during the developmental cycle glycogen phosphorylase, aminopeptidase, and alanine transaminase are developmentally regulated, that is their specific activities increased at a specific time in the developmental cycle. Phosphorylase activity is undetectable in developing cells until mid-aggregation whereupon it increases and reaches a maximum at mid-culmination. Thereafter the enzyme disappears. Actinomycin D and cycloheximide studies as well as studies with morphologically aberrant and temporally deranged mutants indicate that prior RNA and concomitant protein synthesis are necessary for the rise and decrease in activity and support the view that the appearance of the enzyme is regulated at the transcriptional level. Aminopeptidase and alanine transaminase increase 3 fold starting at starvation and reach maximum activity at 18 and 5 hours respectively.

The cellular DNA s of D. discoideum were characterized by CsC1 buoyant density gradient centrifugation and by renaturation kinetics. Whole cell DNA exhibits three bands in CsCl: ρ = 1.676 g/cc (nuclear main band), 1.687 (nuclear satellite), and 1.682 (mitochondrial). Reassociation kinetics at a criterion of Tm -23°C indicates that the nuclear reiterated sequences make up 30% of the genome (Cot1/2 (pure) 0.28) and the single-copy DNA 70% (Cot1/2(pure) 70). The complexity of the nuclear genome is 30 x 109 daltons and that of the mitochondrial DNA is 35-40 x 106 daltons (Cot1/2 0.15). rRNA cistrons constitute 2.2% of nuclear DNA and have a ρ = 1.682.

RNA extracted from 4 stages during developmental cycle of Dictyostelium was hybridized with purified single-copy nuclear DNA. The hybrids had properties indicative of single-copy DNA-RNA hybrids. These studies indicate that there are, during development, qualitative and quantitative changes in the portion of the single-copy of the genome transcribed. Overall, 56% of the genome is represented by transcripts between the amoeba and mid-culmination stages. Some 19% are sequences which are represented at all stages while 37% of the genome consists of stage specific sequences.

Part II. RNA and protein synthesis and polysome formation were studied during early development of the surf clam Spisula solidissima embryos. The oocyte has a small number of polysomes and a low but measurable rate of protein synthesis (leucine-3H incorporation). After fertilization, there is a continual increase in the percentage of ribosomes sedimenting in the polysome region. Newly synthesized RNA (uridine-5-3H incorporation) was found in polysomes as early as the 2-cell stage. During cleavage, the newly formed RNA is associated mainly with the light polysomes.

RNA extracted from polysomes labeled at the 4-cell stage is polydisperse, nonribosomal, and non-4 S. Actinomycin D causes a reduction of about 30% of the polysomes formed between fertilization and the 16-cell stage.

In the early cleavage stages the light polysomes are mostly affected by actinomycin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurons in the songbird forebrain nucleus HVc are highly sensitive to auditory temporal context and have some of the most complex auditory tuning properties yet discovered. HVc is crucial for learning, perceiving, and producing song, thus it is important to understand the neural circuitry and mechanisms that give rise to these remarkable auditory response properties. This thesis investigates these issues experimentally and computationally.

Extracellular studies reported here compare the auditory context sensitivity of neurons in HV c with neurons in the afferent areas of field L. These demonstrate that there is a substantial increase in the auditory temporal context sensitivity from the areas of field L to HVc. Whole-cell recordings of HVc neurons from acute brain slices are described which show that excitatory synaptic transmission between HVc neurons involve the release of glutamate and the activation of both AMPA/kainate and NMDA-type glutamate receptors. Additionally, widespread inhibitory interactions exist between HVc neurons that are mediated by postsynaptic GABA_A receptors. Intracellular recordings of HVc auditory neurons in vivo provides evidence that HV c neurons encode information about temporal structure using a variety of cellular and synaptic mechanisms including syllable-specific inhibition, excitatory post-synaptic potentials with a range of different time courses, and burst-firing, and song-specific hyperpolarization.

The final part of this thesis presents two computational approaches for representing and learning temporal structure. The first method utilizes comput ational elements that are analogous to temporal combination sensitive neurons in HVc. A network of these elements can learn using local information and lateral inhibition. The second method presents a more general framework which allows a network to discover mixtures of temporal features in a continuous stream of input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel member of the ATP-binding cassette (ABC) superfamily of membrane proteins. CFTR has two homologous halves, each consisting of six transmembrane spanning domains (TM) followed by a nucleotide binding fold, connected by a regulatory (R) domain. This thesis addresses the question of which domains are responsible for Cl^- selectivity, i.e., which domains line the channel pore.

To address this question, novel blockers of CFTR were characterized. CFTR was heterologously expressed in Xenopus oocytes to study the mechanism of block by two closely related arylaminobenzoates, diphenylamine-2-carboxylic acid (DPC) and flufenamic acid (FFA). Block by both is voltage-dependent, with a binding site ≈ 40% through the electric field of the membrane. DPC and FFA can both reach their binding site from either side of the membrane to produce a flickering block of CFTR single channels. In addition, DPC block is influenced by Cl^- concentration, and DPC blocks with a bimolecular forward binding rate and a unimolecular dissociation rate. Therefore, DPC and FFA are open-channel blockers of CFTR, and a residue of CFTR whose mutation affects their binding must line the pore.

Screening of site-directed mutants for altered DPC binding affinity reveals that TM-6 and TM-12 line the pore. Mutation of residue 5341 in TM-6 abolishes most DPC block, greatly reduces single-channel conductance, and alters the direction of current rectification. Additional residues are found in TM-6 (K335) and TM-12 (T1134) whose mutations weaken or strengthen DPC block; other mutations move the DPC binding site from TM-6 to TM-12. The strengthened block and lower conductance due to mutation T1134F is quantitated at the single-channel level. The geometry of DPC and of the residues mutated suggest α-helical structures for TM-6 and TM-12. Evidence is presented that the effects of the mutations are due to direct side-chain interaction, and not to allosteric effects propagated through the protein. Mutations are also made in TM-11, including mutation S1118F, which gives voltage-dependent current relaxations. The results may guide future studies on permeation through ABC transporters and through other Cl^- channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA interference (RNAi) is a powerful biological pathway allowing for sequence-specific knockdown of any gene of interest. While RNAi is a proven tool for probing gene function in biological circuits, it is limited by being constitutively ON and executes the logical operation: silence gene Y. To provide greater control over post-transcriptional gene silencing, we propose engineering a biological logic gate to implement “conditional RNAi.” Such a logic gate would silence gene Y only upon the expression of gene X, a completely unrelated gene, executing the logic: if gene X is transcribed, silence independent gene Y. Silencing of gene Y could be confined to a specific time and/or tissue by appropriately selecting gene X.

To implement the logic of conditional RNAi, we present the design and experimental validation of three nucleic acid self-assembly mechanisms which detect a sub-sequence of mRNA X and produce a Dicer substrate specific to gene Y. We introduce small conditional RNAs (scRNAs) to execute the signal transduction under isothermal conditions. scRNAs are small RNAs which change conformation, leading to both shape and sequence signal transduction, in response to hybridization to an input nucleic acid target. While all three conditional RNAi mechanisms execute the same logical operation, they explore various design alternatives for nucleic acid self-assembly pathways, including the use of duplex and monomer scRNAs, stable versus metastable reactants, multiple methods of nucleation, and 3-way and 4-way branch migration.

We demonstrate the isothermal execution of the conditional RNAi mechanisms in a test tube with recombinant Dicer. These mechanisms execute the logic: if mRNA X is detected, produce a Dicer substrate targeting independent mRNA Y. Only the final Dicer substrate, not the scRNA reactants or intermediates, is efficiently processed by Dicer. Additional work in human whole-cell extracts and a model tissue-culture system delves into both the promise and challenge of implementing conditional RNAi in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental question in neuroscience is how distributed networks of neurons communicate and coordinate dynamically and specifically. Several models propose that oscillating local networks can transiently couple to each other through phase-locked firing. Coherent local field potentials (LFP) between synaptically connected regions is often presented as evidence for such coupling. The physiological correlates of LFP signals depend on many anatomical and physiological factors, however, and how the underlying neural processes collectively generate features of different spatiotemporal scales is poorly understood. High frequency oscillations in the hippocampus, including gamma rhythms (30-100 Hz) that are organized by the theta oscillations (5-10 Hz) during active exploration and REM sleep, as well as sharp wave-ripples (SWRs, 140-200 Hz) during immobility or slow wave sleep, have each been associated with various aspects of learning and memory. Deciphering their physiology and functional consequences is crucial to understanding the operation of the hippocampal network.

We investigated the origins and coordination of high frequency LFPs in the hippocampo-entorhinal network using both biophysical models and analyses of large-scale recordings in behaving and sleeping rats. We found that the synchronization of pyramidal cell spikes substantially shapes, or even dominates, the electrical signature of SWRs in area CA1 of the hippocampus. The precise mechanisms coordinating this synchrony are still unresolved, but they appear to also affect CA1 activity during theta oscillations. The input to CA1, which often arrives in the form of gamma-frequency waves of activity from area CA3 and layer 3 of entorhinal cortex (EC3), did not strongly influence the timing of CA1 pyramidal cells. Rather, our data are more consistent with local network interactions governing pyramidal cells' spike timing during the integration of their inputs. Furthermore, the relative timing of input from EC3 and CA3 during the theta cycle matched that found in previous work to engage mechanisms for synapse modification and active dendritic processes. Our work demonstrates how local networks interact with upstream inputs to generate a coordinated hippocampal output during behavior and sleep, in the form of theta-gamma coupling and SWRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All major geochemical cycles on the Earth’s surface are mediated by microorganisms. Our understanding of how these microbes have interacted with their environments (and vice versa) throughout Earth's history, and how they will respond to changes in the future, is primarily based on studying their activity in different environments today. The overarching questions that motivate the research presented in the two parts of this thesis -- how do microorganisms shape their environment (and vice versa)? and how can we best study microbial activity in situ? -- have arisen from the ultimate goal of being able to predict microbial activity in response to changes within their environments both past and future.

Part one focuses on work related to microbial processes in iron-rich Lake Matano and, more broadly, microbial interactions with the biogeochemical cycling of iron. Primarily, we find that the chelation of ferrous iron by organic ligands can affect the role of iron in anoxic environmental systems, enabling photomixotrophic growth of anoxygenic microorganisms with ferrous iron, as well as catalyzing the oxidation of ferrous iron by denitrification intermediates. These results imply that the ability to grow photomixotrophically on ferrous iron might be more widespread than previously assumed, and that the co-occurrence of chemical and biological processes involved in the coupled biogeochemical cycling of iron and nitrogen likely dominate organic-rich environmental systems.

Part two switches focus to in situ measurements of growth activity and comprises work related to microbial processes in the Cystic Fibrosis lung, and more broadly, the physiology of slow growth. We introduce stable isotope labeling of microbial membrane fatty acids and whole cells with heavy water as a new technique to measure microbial activity in a wide range of environments, demonstrate its application in continuous culture in the laboratory at the population and single cell level, and apply the tool to measure the in situ activity of the opportunistic pathogen Staphylococcus aureus within the environment of expectorated mucus from cystic fibrosis patients. We find that the average in situ growth rates of S. aureus fall into a range of generation times between ~12 hours and ~4 days, with substantial heterogeneity at the single-cell level. These data illustrate the use of heavy water as a universal environmental tracer for microbial activity, and highlight the crucial importance of studying the physiology of slow growth in representative laboratory systems in order to understand the role of these microorganisms in their native environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I

Chapter 1.....A physicochemical study of the DNA molecules from the three bacteriophages, N1, N5, and N6, which infect the bacterium, M. lysodeikticus, has been made. The molecular weights, as measured by both electron microscopy and sedimentation velocity, are 23 x 106 for N5 DNA and 31 x 106 for N1 and N6 DNA's. All three DNA's are capable of thermally reversible cyclization. N1 and N6 DNA's have identical or very similar base sequences as judged by membrane filter hybridization and by electron microscope heteroduplex studies. They have identical or similar cohesive ends. These results are in accord with the close biological relation between N1 and N6 phages. N5 DNA is not closely related to N1 or N6 DNA. The denaturation Tm of all three DNA's is the same and corresponds to a (GC) content of 70%. However, the buoyant densities in CsCl of Nl and N6 DNA's are lower than expected, corresponding to predicted GC contents of 64 and 67%. The buoyant densities in Cs2SO4 are also somewhat anomalous. The buoyant density anomalies are probably due to the presence of odd bases. However, direct base composition analysis of N1 DNA by anion exchange chromatography confirms a GC content of 70%, and, in the elution system used, no peaks due to odd bases are present.

Chapter 2.....A covalently closed circular DNA form has been observed as an intracellular form during both productive and abortive infection processes in M. lysodeikticus. This species has been isolated by the method of CsC1-ethidium bromide centrifugation and examined with an electron microscope.

Chapter 3.....A minute circular DNA has been discovered as a homogeneous population in M. lysodeikticus. Its length and molecular weight as determined by electron microscopy are 0.445 μ and 0.88 x 106 daltons respectively. There is about one minicircle per bacterium.

Chapter 4.....Several strains of E. coli 15 harbor a prophage. Viral growth can be induced by exposing the host to mitomycin C or to uv irradiation. The coliphage 15 particles from E. coli 15 and E, coli 15 T- appear as normal phage with head and tail structure; the particles from E. coli 15 TAU are tailless. The complete particles exert a colicinogenic activity on E.coli 15 and 15 T-, the tailless particles do not. No host for a productive viral infection has been found and the phage may be defective. The properties of the DNA of the virus have been studied, mainly by electron microscopy. After induction but before lysis, a closed circular DNA with a contour length of about 11.9 μ is found in the bacterium; the mature phage DNA is a linear duplex and 7.5% longer than the intracellular circular form. This suggests the hypothesis that the mature phage DNA is terminally repetitious and circularly permuted. The hypothesis was confirmed by observing that denaturation and renaturation of the mature phage DNA produce circular duplexes with two single-stranded branches corresponding to the terminal repetition. The contour length of the mature phage DNA was measured relative to φX RFII DNA and λ DNA; the calculated molecular weight is 27 x 106. The length of the single-stranded terminal repetition was compared to the length of φX 174 DNA under conditions where single-stranded DNA is seen in an extended form in electron micrographs. The length of the terminal repetition is found to be 7.4% of the length of the nonrepetitious part of the coliphage 15 DNA. The number of base pairs in the terminal repetition is variable in different molecules, with a fractional standard deviation of 0.18 of the average number in the terminal repetition. A new phenomenon termed "branch migration" has been discovered in renatured circular molecules; it results in forked branches, with two emerging single strands, at the position of the terminal repetition. The distribution of branch separations between the two terminal repetitions in the population of renatured circular molecules was studied. The observed distribution suggests that there is an excluded volume effect in the renaturation of a population of circularly permuted molecules such that strands with close beginning points preferentially renature with each other. This selective renaturation and the phenomenon of branch migration both affect the distribution of branch separations; the observed distribution does not contradict the hypothesis of a random distribution of beginning points around the chromosome.

Chapter 5....Some physicochemical studies on the minicircular DNA species in E. coli 15 (0.670 μ, 1.47 x 106 daltons) have been made. Electron microscopic observations showed multimeric forms of the minicircle which amount to 5% of total DNA species and also showed presumably replicating forms of the minicircle. A renaturation kinetic study showed that the minicircle is a unique DNA species in its size and base sequence. A study on the minicircle replication has been made under condition in which host DNA synthesis is synchronized. Despite experimental uncertainties involved, it seems that the minicircle replication is random and the number of the minicircles increases continuously throughout a generation of the host, regardless of host DNA synchronization.

Part II

The flow dichroism of dilute DNA solutions (A260≈0.1) has been studied in a Couette-type apparatus with the outer cylinder rotating and with the light path parallel to the cylinder axis. Shear gradients in the range of 5-160 sec.-1 were studied. The DNA samples were whole, "half," and "quarter" molecules of T4 bacteriophage DNA, and linear and circular λb2b5c DNA. For the linear molecules, the fractional flow dichroism is a linear function of molecular weight. The dichroism for linear A DNA is about 1.8 that of the circular molecule. For a given DNA, the dichroism is an approximately linear function of shear gradient, but with a slight upward curvature at low values of G, and some trend toward saturation at larger values of G. The fractional dichroism increases as the supporting electrolyte concentration decreases.