167 resultados para video surveillance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a new event recognition framework, based on the Dempster-Shafer theory of evidence, which combines the evidence from multiple atomic events detected by low-level computer vision analytics. The proposed framework employs evidential network modelling of composite events. This approach can effectively handle the uncertainty of the detected events, whilst inferring high-level events that have semantic meaning with high degrees of belief. Our scheme has been comprehensively evaluated against various scenarios that simulate passenger behaviour on public transport platforms such as buses and trains. The average accuracy rate of our method is 81% in comparison to 76% by a standard rule-based method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new framework for multi-subject event inference in surveillance video, where measurements produced by low-level vision analytics usually are noisy, incomplete or incorrect. Our goal is to infer the composite events undertaken by each subject from noise observations. To achieve this, we consider the temporal characteristics of event relations and propose a method to correctly associate the detected events with individual subjects. The Dempster–Shafer (DS) theory of belief functions is used to infer events of interest from the results of our vision analytics and to measure conflicts occurring during the event association. Our system is evaluated against a number of videos that present passenger behaviours on a public transport platform namely buses at different levels of complexity. The experimental results demonstrate that by reasoning with spatio-temporal correlations, the proposed method achieves a satisfying performance when associating atomic events and recognising composite events involving multiple subjects in dynamic environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper examines the use of visual technologies by political activists in protest situations to monitor police conduct. Using interview data with Australian video activists, this paper seeks to understand the motivations, techniques and outcomes of video activism, and its relationship to counter-surveillance and police accountability. Our data also indicated that there have been significant transformations in the organization and deployment of counter-surveillance methods since 2000, when there were large-scale protests against the World Economic Forum meeting in Melbourne accompanied by a coordinated campaign that sought to document police misconduct. The paper identifies and examines two inter-related aspects of this: the act of filming and the process of dissemination of this footage. It is noted that technological changes over the last decade have led to a proliferation of visual recording technologies, particularly mobile phone cameras, which have stimulated a corresponding proliferation of images. Analogous innovations in internet communications have stimulated a coterminous proliferation of potential outlets for images Video footage provides activists with a valuable tool for safety and publicity. Nevertheless, we argue, video activism can have unintended consequences, including exposure to legal risks and the amplification of official surveillance. Activists are also often unable to control the political effects of their footage or the purposes to which it is used. We conclude by assessing the impact that transformations in both protest organization and media technologies might have for counter-surveillance techniques based on visual surveillance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Privacy region protection in video surveillance systems is an active topic at present. In previous research, a binary mask mechanism has been developed to indicate the privacy region; however this incurs a significant bitrate overhead. In this paper, an adaptive binary mask is proposed to represent the privacy region. In a practical privacy region protection application, in which the privacy region typically occupies less than half of the overall frame and is rectangular or approximately rectangular, the proposed adaptive binary mask can effectively reduce the bitrate overhead. The proposed method can also be easily applied to the FMO mechanism of H.264/AVC, providing both error resilience and a lower bitrate overhead.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In intelligent video surveillance systems, scalability (of the number of simultaneous video streams) is important. Two key factors which hinder scalability are the time spent in decompressing the input video streams, and the limited computational power of the processor. This paper demonstrates how a combination of algorithmic and hardware techniques can overcome these limitations, and significantly increase the number of simultaneous streams. The techniques used are processing in the compressed domain, and exploitation of the multicore and vector processing capability of modern processors. The paper presents a system which performs background modeling, using a Mixture of Gaussians approach. This is an important first step in the segmentation of moving targets. The paper explores the effects of reducing the number of coefficients in the compressed domain, in terms of throughput speed and quality of the background modeling. The speedups achieved by exploiting compressed domain processing, multicore and vector processing are explored individually. Experiments show that a combination of all these techniques can give a speedup of 170 times on a single CPU compared to a purely serial, spatial domain implementation, with a slight gain in quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Object tracking is an active research area nowadays due to its importance in human computer interface, teleconferencing and video surveillance. However, reliable tracking of objects in the presence of occlusions, pose and illumination changes is still a challenging topic. In this paper, we introduce a novel tracking approach that fuses two cues namely colour and spatio-temporal motion energy within a particle filter based framework. We conduct a measure of coherent motion over two image frames, which reveals the spatio-temporal dynamics of the target. At the same time, the importance of both colour and motion energy cues is determined in the stage of reliability evaluation. This determination helps maintain the performance of the tracking system against abrupt appearance changes. Experimental results demonstrate that the proposed method outperforms the other state of the art techniques in the used test datasets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While video surveillance systems have become ubiquitous in our daily lives, they have introduced concerns over privacy invasion. Recent research to address these privacy issues includes a focus on privacy region protection, whereby existing video scrambling techniques are applied to specific regions of interest (ROI) in a video while the background is left unchanged. Most previous work in this area has only focussed on encrypting the sign bits of nonzero coefficients in the privacy region, which produces a relatively weak scrambling effect. In this paper, to enhance the scrambling effect for privacy protection, it is proposed to encrypt the intra prediction modes (IPM) in addition to the sign bits of nonzero coefficients (SNC) within the privacy region. A major issue with utilising encryption of IPM is that drift error is introduced outside the region of interest. Therefore, a re-encoding method, which is integrated with the encryption of IPM, is also proposed to remove drift error. Compared with a previous technique that uses encryption of IPM, the proposed re-encoding method offers savings in the bitrate overhead while completely removing the drift error. Experimental results and analysis based on H.264/AVC were carried out to verify the effectiveness of the proposed methods. In addition, a spiral binary mask mechanism is proposed that can reduce the bitrate overhead incurred by flagging the position of the privacy region. A definition of the syntax structure for the spiral binary mask is given. As a result of the proposed techniques, the privacy regions in a video sequence can be effectively protected by the enhanced scrambling effect with no drift error and a lower bitrate overhead.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the novel theory for performing multi-agent activity recognition without requiring large training corpora. The reduced need for data means that robust probabilistic recognition can be performed within domains where annotated datasets are traditionally unavailable. Complex human activities are composed from sequences of underlying primitive activities. We do not assume that the exact temporal ordering of primitives is necessary, so can represent complex activity using an unordered bag. Our three-tier architecture comprises low-level video tracking, event analysis and high-level inference. High-level inference is performed using a new, cascading extension of the Rao–Blackwellised Particle Filter. Simulated annealing is used to identify pairs of agents involved in multi-agent activity. We validate our framework using the benchmarked PETS 2006 video surveillance dataset and our own sequences, and achieve a mean recognition F-Score of 0.82. Our approach achieves a mean improvement of 17% over a Hidden Markov Model baseline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.