Adaptive Fusion Of Particle Filtering And Spatio-Temporal Motion Energy For Human Tracking


Autoria(s): Zhou, Huiyu; Fei, Minrui; Sadka, Abdul; Zhang, Yi; Li, Xuelong
Data(s)

01/11/2014

31/12/1969

Resumo

Object tracking is an active research area nowadays due to its importance in human computer interface, teleconferencing and video surveillance. However, reliable tracking of objects in the presence of occlusions, pose and illumination changes is still a challenging topic. In this paper, we introduce a novel tracking approach that fuses two cues namely colour and spatio-temporal motion energy within a particle filter based framework. We conduct a measure of coherent motion over two image frames, which reveals the spatio-temporal dynamics of the target. At the same time, the importance of both colour and motion energy cues is determined in the stage of reliability evaluation. This determination helps maintain the performance of the tracking system against abrupt appearance changes. Experimental results demonstrate that the proposed method outperforms the other state of the art techniques in the used test datasets.

Identificador

http://pure.qub.ac.uk/portal/en/publications/adaptive-fusion-of-particle-filtering-and-spatiotemporal-motion-energy-for-human-tracking(22b09663-19a0-413f-956b-eca5b96f4dbf).html

http://dx.doi.org/10.1016/j.patcog.2014.05.006

Idioma(s)

eng

Direitos

info:eu-repo/semantics/embargoedAccess

Fonte

Zhou , H , Fei , M , Sadka , A , Zhang , Y & Li , X 2014 , ' Adaptive Fusion Of Particle Filtering And Spatio-Temporal Motion Energy For Human Tracking ' Pattern Recognition , vol 47 , no. 11 , pp. 3552–3567 . DOI: 10.1016/j.patcog.2014.05.006

Tipo

article