Hardware Acceleration of Background Modeling in the Compressed Domain


Autoria(s): Popa, Stefan; Crookes, Daniel; Miller, Paul
Data(s)

01/10/2013

Resumo

In intelligent video surveillance systems, scalability (of the number of simultaneous video streams) is important. Two key factors which hinder scalability are the time spent in decompressing the input video streams, and the limited computational power of the processor. This paper demonstrates how a combination of algorithmic and hardware techniques can overcome these limitations, and significantly increase the number of simultaneous streams. The techniques used are processing in the compressed domain, and exploitation of the multicore and vector processing capability of modern processors. The paper presents a system which performs background modeling, using a Mixture of Gaussians approach. This is an important first step in the segmentation of moving targets. The paper explores the effects of reducing the number of coefficients in the compressed domain, in terms of throughput speed and quality of the background modeling. The speedups achieved by exploiting compressed domain processing, multicore and vector processing are explored individually. Experiments show that a combination of all these techniques can give a speedup of 170 times on a single CPU compared to a purely serial, spatial domain implementation, with a slight gain in quality.

Identificador

http://pure.qub.ac.uk/portal/en/publications/hardware-acceleration-of-background-modeling-in-the-compressed-domain(bb170d9e-8985-4c17-b42b-535b93290f76).html

http://dx.doi.org/10.1109/TIFS.2013.2276753

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Popa , S , Crookes , D & Miller , P 2013 , ' Hardware Acceleration of Background Modeling in the Compressed Domain ' IEEE Transactions on Information Forensics and Security , vol 8 , no. 10 , pp. 1562-1574 . DOI: 10.1109/TIFS.2013.2276753

Palavras-Chave #Index Terms—Background subtraction, compressed domain,
Tipo

article