24 resultados para VACUUM MISALIGNMENT
The Fatigue Life of Bone Cement: how it is affected by mixer design, vacuum level and user technique
Resumo:
.In this letter, we demonstrate for the first time that gate misalignment is not a critical limiting factor for low voltage operation in gate-underlap double gate (DG) devices. Our results show that underlap architecture significantly extends the tolerable limit of gate misalignment in 25 nm devices. DG MOSFETs with high degree of gate misalignment and optimal gate-underlap design can perform comparably or even better than self-aligned nonunderlap devices. Results show that spacer-to-straggle (s/sigma) ratio, a key design parameter for underlap devices, should be within the range of 2.3-3.0 to accommodate back gate misalignment. These results are very significant as the stringent process control requirements for achieving self-alignment in nanoscale planar DG MOSFETs are considerably relaxed
Resumo:
(2006) Vol. 35 No. 8 317
Evaluation of an operator independent bone cement vacuum mixing system for joint replacement surgery
Resumo:
The field of surface polariton physics really took off with the prism coupling techniques developed by Kretschmann and Raether, and by Otto. This article reports on the construction and operation of a rotatable, in vacuo, variable temperature, Otto coupler with a coupling gap that can be varied by remote control. The specific design attributes of the system offer additional advantages to those of standard Otto systems of (i) temperature variation (ambient to 85 K), and (ii) the use of a valuable, additional reference point, namely the gap-independent reflectance at the Brewster angle at any given, fixed temperature. The instrument is placed firmly in a historical context of developments in the field. The efficacy of the coupler is demonstrated by sample attenuated total reflectance results on films of platinum, niobium, and yttrium barium copper oxide and on aluminum/gallium arsenide (Al/GaAs) Schottky diode structures. (C) 2000 American Institute of Physics. [S0034-6748(00)02411-4].
Resumo:
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by Lai et al. has challenged this assumption, and proposes that the star-disc interaction in the pre-main sequence phase can exert a torque on the star and change its rotation axis angle. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris disks. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disk inclinations shows no evidence for a misalignment between the two.
Resumo:
In the present work, by investigating the influence of source/drain (S/D) extension region engineering (also known as gate-underlap architecture) in planar Double Gate (DG) SOI MOSFETs, we offer new design insights to achieve high tolerance to gate misalignment/oversize in nanoscale devices for ultra-low-voltage (ULV) analog/rf applications. Our results show that (i) misaligned gate-underlap devices perform significantly better than DC devices with abrupt source/drain junctions with identical misalignment, (ii) misaligned gate underlap performance (with S/D optimization) exceeds perfectly aligned DG devices with abrupt S/D regions and (iii) 25% back gate misalignment can be tolerated without any significant degradation in cut-off frequency (f(T)) and intrinsic voltage gain (A(VO)). Gate-underlap DG devices designed with spacer-to-straggle ratio lying within the range 2.5 to 3.0 show best tolerance to misaligned/oversize back gate and indeed are better than self-aligned DG MOSFETs with non-underlap (abrupt) S/D regions. Impact of gate length and silicon film thickness scaling is also discussed. These results are very significant as the tolerable limit of misaligned/oversized back gate is considerably extended and the stringent process control requirements to achieve self-alignment can be relaxed for nanoscale planar ULV DG MOSFETs operating in weak-inversion region. The present work provides new opportunities for realizing future ULV analog/rf design with nanoscale gate-underlap DG MOSFETs. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
By using superoleophobic alumina and low vapor pressure oils we have been able to study wetting behavior at high vacuum. Here, we show that a superoleophobic state can exist for some probe liquids, even under high vacuum. However, with other liquids the surfaces are only superoloephobic because air is trapped beneath the droplet and the contact angle decreases dramatically (150 degrees-120 degrees) if this air is removed. These observations open up the possibility of designing materials which fully exploit the potential of physically trapped air to achieve extreme oleophobicity and/or hydrophobicity. (C) 2011 American Institute of Physics. [doi:10.1063/1.3589352]
Resumo:
We present results from a vacuum-ultraviolet (VUV)
Resumo:
Experiments have been carried out to investigate the polar distribution of atomic material ablated during the pulsed laser deposition of Cu in vacuum. Data were obtained as functions of focused laser spot size and power density. Thin films were deposited onto flat glass substrates and thickness profiles were transformed into polar atomic flux distributions of the form f(theta)=cos(n) theta. At constant focused laser power density on target, I=4.7+/-0.3X10(8) W/cm(2), polar distributions were found to broaden with a reduction in the focused laser spot size. The polar distribution exponent n varied from 15+/-2 to 7+/-1 for focused laser spot diameter variation from 2.5 to 1.4 mm, respectively, with the laser beam exhibiting a circular aspect on target. With the focused laser spot size held constant at phi=1.8 mm, polar distributions were observed to broaden with a reduction in the focused laser power density on target, with the associated polar distribution exponent n varying from 13+/-1.5 to 8+/-1 for focused laser power density variation from 8.3+/-0.3X10(8) to 2.2+/-0.1X10(8) W/cm(2) respectively. Data were compared with an analytical model available within the literature, which correctly predicts broadening of the polar distribution with a reduction in focused laser spot size and with a reduction in focused laser power density, although the experimentally observed magnitude was greater than that predicted in both cases. (C) 1996 American Institute of Physics.