19 resultados para Unmanned air vehicle
Resumo:
Maintaining the ecosystem is one of the main concerns in this modern age. With the fear of ever-increasing global warming, the UK is one of the key players to participate actively in taking measures to slow down at least its phenomenal rate. As an ingredient to this process, the Springer vehicle was designed and developed for environmental monitoring and pollutant tracking. This special issue paper highlighted the Springer hardware and software architecture including various navigational sensors, a speed controller, and an environmental monitoring unit. In addition, details regarding the modelling of the vessel were outlined based mainly on experimental data. The formulation of a fault tolerant multi-sensor data fusion technique was also presented. Moreover, control strategy based on a linear quadratic Gaussian controller was developed and simulated on the Springer model.
Gaussian controller is developed and simulated on the Springer model.
Resumo:
Over recent years, a number of marine autopilots designed using linear techniques have underperformed owing to their inability to cope with nonlinear vessel dynamics. To this end, a new design framework for the development of nonlinear autopilots is proposed herein. Local control networks (LCNs) can be used in the design of nonlinear control systems. In this paper, a LCN approach is taken in the design of a nonlinear autopilot for controlling the nonlinear yaw dynamics of an unmanned surface vehicle known as Springer. It is considered the approach is the first of its kind to be used in marine control systems design. Simulation results are presented and the performance of the nonlinear autopilot is compared with that of an existing Springer linear quadratic Gaussian (LQG) autopilot using standard system performance criteria. From the results it can be concluded the LCN autopilot out performed that based on LQG techniques in terms of the selected criteria. Also it provided more energy saving control strategies and would thereby increase operational duration times for the vehicle during real-time missions.
Resumo:
Unmanned surface vehicles are becoming increasingly vital tools in a variety of maritime applications. Unfortunately, their usability is severely constrained by the lack of a reliable obstacle detection and avoidance system. In this article, one such experimental platform is proposed, which performs obstacle detection, risk assessment and path planning (avoidance) tasks autonomously in an integrated manner. The detection system is based on a vision-LIDAR (light detection and ranging) system, whereas a heuristic path planner is utilised. A unique property of the path planner is its compliance with the marine collision regulations. It is demonstrated through hardware-in-the-loop simulations that the proposed system can be useful for both uninhabited and manned vessels.
Resumo:
The aim of this paper is to report the preliminary development of an automatic collision avoidance technique for unmanned marine craft based on standardised rules, COLREGs, defined by the International Maritime Organisation. It is noted that all marine surface vessels are required to adhere to COLREGs at all times in order to minimise or eliminate the risk of collisions. The approach presented is essentially a reactive path planning algorithm which provides feedback to the autopilot of an unmanned vessel or the human captain of a manned ship for steering the craft safely. The proposed strategy consists of waypoint guidance by line-of-sight coupled with a manual biasing scheme. This is applied to the dynamic model of an unmanned surface vehicle. A simple PID autopilot is incorporated to ensure that the vessel adheres to the generated seaway. It is shown through simulations that the resulting scheme is able to generate viable trajectories in the presence of both stationary and dynamic obstacles. Rules 8 and 14 of the COLREGs, which apply to the amount of manoeuvre and to a head-on scenario respectively are simulated. A comparison is also made with an offline or deliberative grid-based path planning algorithm which has been modified to generate COLREGs-compliant routes.
Resumo:
In this paper, the overall formation stability of unmanned multi-vehicle is mathematically presented under interconnection topologies. A novel definition of formation error is first given and followed by the proposed formation stability hypothesis. Based on this hypothesis, a unique extension-decomposition-aggregation scheme is then employed to support the stability analysis for the overall multi-vehicle formation under a mesh topology. It is proved that the overall formation control system consisting of N number of nonlinear vehicles is not only asymptotically, but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. This technique is shown to be applicable for a mesh topology but is equally applicable for other topologies. Simulation study of the formation manoeuvre of multiple Aerosonde UAVs, in 3D-space, is finally carried out verifying the achieved formation stability result.
Resumo:
This paper proposes a new methodology for solving the unmanned multi-vehicle formation control problem. It employs a unique “extension-decomposition-aggregation” scheme to transform the overall complex formation control problem to a group of sub-problems which work via boundary interactions. The H∞ robust control strategy is applied to design the decentralised formation controllers to reject the interactions and work jointly to maintain the stability of the overall formation. Simulation studies have been performed to verify its performance and effectiveness.
Resumo:
This paper presents a tensegrity-based co-operative control algorithm for an aircraft formation. The 6 degrees-of-freedom model of the well-known Aerosonde unmanned aerial vehicle (UAV), is integrated with the model of the tensegrity structure and a decentralised control scheme is proposed. The strategy is shown to be scalable for 2n number of UAVs and is able to maintain a firm geometry whilst allowing flexible shape transformations. Simulation results demonstrate the effectiveness and stability of the proposed tensegrity-based formation control algorithm in 3D.
Resumo:
Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small-scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor–relief landforms as wind, weather, water and vegetation impacts on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close-range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss-side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee-side flute. This is consistent with the lee-side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study.