95 resultados para SENSITIVE K -CHANNELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Odontoblasts form the outermost cellular layer of the dental pulp where they have been proposed to act as sensory receptor cells. Despite this suggestion, evidence supporting their direct role in mediating thermo-sensation and nociception is lacking. Transient receptor potential (TRP) ion channels directly mediate nociceptive functions, but their functional expression in human odontoblasts has yet to be elucidated. In the present study, we have examined the molecular and functional expression of thermo-sensitive TRP channels in cultured odontoblast-like cells and in native human odontoblasts obtained from healthy wisdom teeth. PCR and western blotting confirmed gene and protein expression of TRPV1, TRPA1 and TRPM8 channels. Immunohistochemistry revealed that these channels were localised to odontoblast-like cells as determined by double staining with dentin sialoprotein (DSP) antibody. In functional assays, agonists of TRPV1, TRPA1 and TRPM8 channels elicited [Ca2+]i transients that could be blocked by relevant antagonists. Application of hot and cold stimuli to the cells also evoked rises in [Ca2+]i which could be blocked by TRP-channel antagonists. Using a gene silencing approached we further confirmed a role for TRPA1 in mediating noxious cold responses in odontoblasts. We conclude that human odontoblasts express functional TRP channels that may play a crucial role in mediating thermal sensation in teeth. Cultured and native human odontoblasts express functional TRP channels that may play a crucial role in mediating thermal sensation in teeth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Accumulating evidence supports a role for odontoblasts in initiating tooth pain, however direct ionic mechanisms underlying dentine nociceptive function remain unclear. The transient receptor potential (TRP) ion channels are directly related to cellular mechanisms of nociception and thermo-sensitive function but their expression by human odontoblasts remains to be determined. Objectives: To investigate the expression and functionality of the thermo-sensitive TRP channels TRPV1, TRPV4, TRPM8 and TRPA1 in human odontoblasts. Methods: Human odontoblasts were derived from dental pulp of immature permanent third molars by explant method. Cell lysates of odontoblasts were subject to SDS- polyacrylamide gel electrophoresis and proteins were blotted onto nitrocellulose membranes. Blots were probed with primary antibodies to TRPA1, TRPM8, TRPV4 and TRPV1. Detection of bound primary antibodies was achieved using appropriate anti-species antibody conjugates and chemiluminescent substrates. Functionality of the channels was determined with Ca2+ microfluorimetry, where cells grown in cover slips and incubated with Fura 2AM prior to stimulation with capsaicin (TRPV1 agonist), 4 alpha-phorbol 12,13-didecanoate (4áPDD) (TRPV4 agonist), icilin (TRPA1 agonist) and menthol (TRPM8 agonist). Emitted fluorescence was measured and the fluorescence ratio (R) was calculated as F340/F380 to determine the level of [Ca2+]i. Results: Western blotting confirmed the molecular localisation of thermo-sensitive TRP channels in human odontoblasts. Functionality assays revealed increase in [Ca2+]i in response to capsacin, icillin, methanol and 4áPDD indicating functional expression of TRPV1, TRPA1, TRPM8 and TRPV4 respectively. Conclusions: Functional expression of thermo-sensitive TRP channels in human odontoblasts may indicate a crucial role for odontoblasts in thermally induced dental pain. (Supported by a Research Grant from the Royal College of Surgeons of Edinburgh)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perforated-patch technique was used to measure membrane currents in smooth muscle cells from sheep urethra. Depolarizing pulses evoked large transient outward currents and several components of sustained current. The transient current and a component of sustained current were blocked by iberiotoxin, penitrem A, and nifedipine but were unaffected by apamin or 4-aminopyridine, suggesting that they were mediated by large-conductance Ca(2+)-activated K(+) (BK) channels. When the BK current was blocked by exposure to penitrem A (100 nM) and Ca(2+)-free bath solution, there remained a voltage-sensitive K(+) current that was moderately sensitive to blockade with tetraethylammonium (TEA; half-maximal effective dose = 3.0 +/- 0.8 mM) but not 4-aminopyridine. Penitrem A (100 nM) increased the spike amplitude and plateau potential in slow waves evoked in single cells, whereas addition of TEA (10 mM) further increased the plateau potential and duration. In conclusion, both Ca(2+)-activated and voltage-dependent K(+) currents were found in urethral myocytes. Both of these currents are capable of contributing to the slow wave in these cells, suggesting that they are likely to influence urethral tone under certain conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

increasing evidence from both clinical and experimental studies indicates that the insulin-releasing hormone, glucagon-like peptide-1 (GLP-1) may exert additional protective/reparative effects on the cardiovascular system. The aim of this study was to examine vasorelaxant effects of GLP-1(7-36)amide, three structurally-related peptides and a non-peptide GLP-1 agonist in rat aorta. Interestingly, all GLP-1 compounds, including the established GLP-1 receptor antagonist, exendin (9-39) caused concentration-dependent relaxation. Mechanistic studies employing hyperpolarising concentrations of potassium or glybenclamide revealed that these relaxant effects are mediated via specific activation of ATP-sensitive potassium channels. Further experiments using a specific membrane-permeable cyclic AMP (cAMP) antagonist, and demonstration of increased cAMP production in response to GLP-1 illustrated the critical importance of this pathway. These data significantly extend previous observations suggesting that GLP-1 may modulate vascular function, and indicate that this effect may be mediated by the GLP-1 receptor. However, further studies are required in order to establish whether GLP-1 related agents may confer additional cardiovascular benefits to diabetic patients. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100?µM) inhibited 44?±?0.05% (mean?±?s.e.m., n?=?11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15?µM at -150 ?mV to 148?µM at -75 ?mV in 120 ?mM external K(+). This current was insensitive to 10?µM glybenclamide. A component of whole-cell current was sensitive to 150?µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To investigate the role of feedback by Ca²?-sensitive plasma-membrane ion channels in endothelin 1 (Et1) signaling in vitro and in vivo. Methods. Et1 responses were imaged from Fluo-4-loaded smooth muscle in isolated segments of rat retinal arteriole using two-dimensional (2-D) confocal laser microscopy. Vasoconstrictor responses to intravitreal injections of Et1 were recorded in the absence and presence of appropriate ion channel blockers using fluorescein angiograms imaged using a confocal scanning laser ophthalmoscope. Results. Et1 (10 nM) increased both basal [Ca²?](i) and the amplitude and frequency of Ca²?-waves in retinal arterioles. The Ca²?-activated Cl?-channel blockers DIDS and 9-anthracene carboxylic acid (9AC) blocked Et1-induced increases in wave frequency, and 9AC also inhibited the increase in amplitude. Iberiotoxin, an inhibitor of large conductance (BK) Ca²?-activated K?-channels, increased wave amplitude in the presence of Et1 but had no effect on frequency. None of these drugs affected basal [Ca²?](i). The voltage-operated Ca²?-channel inhibitor nimodipine inhibited wave frequency and amplitude and also lowered basal [Ca²?](i) in the presence of Et1. Intravitreal injection of Et1 caused retinal arteriolar vasoconstriction. This was inhibited by DIDS but not by iberiotoxin or penitrem A, another BK-channel inhibitor. Conclusions. Et1 evokes increases in the frequency of arteriolar Ca²?-waves in vitro, resulting in vasoconstriction in vivo. These responses, initiated by release of stored Ca²?, also require positive feedback via Ca²?-activated Cl?-channels and L-type Ca²?-channels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxaliplatin, an effective cytotoxic treatment in combination with 5-fluorouracil for colorectal cancer, is associated with sensory, motor and autonomic neurotoxicity. Motor symptoms include hyperexcitability while autonomic effects include urinary retention, but the cause of these side-effects is unknown. We examined the effects on motor nerve function in the mouse hemidiaphragm and on the autonomic system in the vas deferens. In the mouse diaphragm, oxaliplatin (0.5 mM) induced multiple endplate potentials (EPPs) following a single stimulus, and was associated with an increase in spontaneous miniature EPP frequency. In the vas deferens, spontaneous excitatory junction potential frequency was increased after 30 min exposure to oxaliplatin; no changes in resting Ca(2+) concentration in nerve terminal varicosities were observed, and recovery after stimuli trains was unaffected.In both tissues, an oxaliplatin-induced increase in spontaneous activity was prevented by the voltage-gated Na(+) channel blocker tetrodotoxin (TTX). Carbamazepine (0.3 mM) also prevented multiple EPPs and the increase in spontaneous activity in both tissues. In diaphragm, beta-pompilidotoxin (100 microM), which slows Na(+) channel inactivation, induced multiple EPPs similar to oxaliplatin's effect. By contrast, blockers of K(+) channels (4-aminopyridine and apamin) did not replicate oxaliplatin-induced hyperexcitability in the diaphragm. The prevention of hyperexcitability by TTX blockade implies that oxaliplatin acts on nerve conduction rather than by effecting repolarisation. The similarity between beta-pompilidotoxin and oxaliplatin suggests that alteration of voltage-gated Na(+) channel kinetics is likely to underlie the acute neurotoxic actions of oxaliplatin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. The patch-clamp technique was used to measure membrane currents in isolated smooth muscle cells dispersed from sheep mesenteric lymphatics. Depolarizing steps positive to -30 mV evoked rapid inward currents followed by noisy outward currents. 2. Nifedipine (1 microM) markedly reduced the outward current, while Bay K 8644 (1 microM) enhanced it. Up to 90% of the outward current was also blocked by iberiotoxin (Kd = 36 nM). 3. Large conductance (304 +/- 15 pS, 7 cells), Ca(2+)- and voltage-sensitive channels were observed during single-channel recordings on inside-out patches using symmetrical 140 mM K+ solutions (at 37 degrees C). The voltage required for half-maximal activation of the channels (V1/2) shifted in the hyperpolarizing direction by 146 mV per 10-fold increase in [Ca2+]i. 4. In whole-cell experiments a voltage-dependent outward current remained when the Ca(2+)-activated current was blocked with penitrem A (100 nM). This current activated at potentials positive to -20 mV and demonstrated the phenomenon of voltage-dependent inactivation (V1/2 = -41 +/- 2 mV, slope factor = 18 +/- 2 mV, 5 cells). 6. Tetraethylammonium (TEA; 30 mM) reduced the voltage-dependent current by 75% (Kd = 3.3 mM, 5 cells) while a maximal concentration of 4-aminopyridine (4-AP; 10 mM) blocked only 40% of the current. TEA alone had as much effect as TEA and 4-AP together, suggesting that there are at least two components to the voltage-sensitive K+ current. 7. These results suggest that lymphatic smooth muscle cells generate a Ca(2+)-activated current, largely mediated by large conductance Ca(2+)-activated K+ channels, and several components of voltage-dependent outward current which resemble 'delayed rectifier' currents in other smooth muscle preparations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We previously showed inhibition of Kir2 inward rectifier K+ channels expressed in Xenopus oocytes by the mitochondrial agents carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and sodium azide. Mutagenesis studies suggested that FCCP may act via phosphatidylinositol 4,5-bisphosphate (PIP2) depletion. This mechanism could be reversible in intact cells but not in excised membrane patches which preclude PIP2 regeneration. This prediction was tested by investigating the reversibility of the inhibition of Kir2.2 by FCCP in intact cells and excised patches. We also investigated the effect of FCCP on Kir2.2 expressed in human embryonic kidney (HEK) cells. Kir2.2 current, expressed in Xenopus oocytes, increased in inside-out patches from FCCP-treated and untreated oocytes. The fraction of total current that increased was 0.79?±?0.05 in control and 0.89?±?0.03 in 10 µM FCCP-treated (P?>?.05). Following “run-up,” Kir2.2 current was re-inhibited by “cramming” inside-out patches into oocytes. Therefore, run-up reflected not reversal of inhibition by FCCP, but washout of an endogenous inhibitor. Kir2.2 current recovered in intact oocytes within 26.5 h of FCCP removal. Injection of oocytes with 0.1 U apyrase completely depleted ATP (P?<?.001) but did not inhibit Kir2.2 and inhibited Kir2.1 by 35% (P?<?.05). FCCP only partially reduced [ATP] (P?<?.001), despite inhibiting Kir2.2 by 75% (P?<?.01) but not Kir2.1. FCCP inhibited Kir2.2 expressed in HEK cells. The recovery of Kir2.2 from inhibition by FCCP requires intracellular components, but direct depletion of ATP does not reproduce the differential inhibitory effect of FCCP. Inhibition of Kir2.2 by FCCP is not unique to Xenopus oocytes. J. Cell. Physiol. 219: 8–13, 2009. © 2008 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To investigate the mechanisms responsible for the dilatation of rat retinal arterioles in response to arachidonic acid (AA). Methods: Changes in the diameter of isolated, pressurized rat retinal arterioles were measured in the presence of AA alone and following pre-incubation with pharmacological agents inhibiting Ca2+ sparks and oscillations and K+ channels. Subcellular Ca2+ signals were recorded in arteriolar myocytes using Fluo-4-based confocal imaging. The effects of AA on membrane currents of retinal arteriolar myocytes were studied using whole-cell perforated patch clamp recording. Results: AA dilated pressurised retinal arterioles under conditions of myogenic tone. Eicosatetraynoic acid (ETYA) exerted a similar effect, but unlike AA, its effects were rapidly reversible. AA-induced dilation was associated with an inhibition of subcellular Ca2+ signals. Interventions known to block Ca2+ sparks and oscillations in retinal arterioles caused dilatation and inhibited AA-induced vasodilator responses. AA accelerated the rate of inactivation of the A-type Kv current and the voltage dependence of inactivation was shifted to more negative membrane potentials. It also enhanced voltage-activated and spontaneous BK currents, but only at positive membrane potentials. Pharmacological inhibition of A-type Kv and BK currents failed to block AA-induced vasodilator responses. AA suppressed L-type Ca2+ currents. Conclusions: These results suggest that AA induces retinal arteriolar vasodilation by inhibiting subcellular Ca2+ signalling activity in retinal arteriolar myocytes, most likely through a mechanism involving the inhibition of L-type Ca2+ channel activity. AA actions on K+ currents are inconsistent with a model in which K+ channels contribute to the vasodilator effects of AA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tetrodotoxin (TTX) is a low molecular weight and potent marine neurotoxin which is usually present in some species of puffer fish. TTX selectively binds to voltage-sensitive sodium channels (VSGCs), blocking the influx of sodium into the cell and affecting neural transmission. The bioaccumulation of this toxin in seafood can poses a risk to human safety. With the purpose of achieving cheap, specific and reliable tools to determine TTX in puffer fish samples, a self-assembled dithiol-based immunoassay, an electrochemical immunosensor and an optical Surface Plasmon Resonance (SPR) immunosensor are proposed. The immunoassay for TTX based on the use of dithiols self-assembled on maleimide-plates (mELISA) has been able to detect as low as 2.28 μg/L of TTX. The effect of different puffer fish matrixes on this mELISA has been quantified and the corresponding correction factors have been established. This
mELISA has enabled to establish the cross-reactivity factors for four TTX analogues: 5,6,11-trideoxy-TTX, 5,6,11-trideoxy-4-anhydro-TTX, 11-nor-TTX-6-ol and 5,11-deoxy-TTX. The crossreactivity factors have also been established by the optical SPR immunosensor previously reported, which had a limit of detection (LOD) of 4.27 μg/L. The mELISA and the SPR immunosensor have then been tested with spiked-puffer fish matrixes, providing an effective
LOD of 0.23 and 0.43 mg/kg respectively, well below the limit set in Japan (2 mg/kg). The mELISA and the SPR immunosensor have also been applied to the analysis of naturally contaminated puffer fish samples, providing similar TTXs contents between techniques and also compared to LC-MS/MS. The suitability of these immunochemical techniques has been demonstrated not only for screening purposes, but also for research activities. Currently, given that dithiols could improve the electron transfer and the sensitivity of an electrochemical assay, the mELISA strategy is being transferred to gold electrodes for the electrochemical detection of TTX and the subsequent development of the multiplexed electrochemical immunosensor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: Outward currents were characterized from cells resembling interstitial cells of Cajal (ICCs) isolated from the detrusor of the guinea pig bladder. MATERIALS AND METHODS: ICC-like cells were studied using the whole cell patch clamp technique and K+ filled pipettes. Outward currents were evoked by stepping positively from a holding potential of -80 mV. RESULTS: ICC-like cells were distinguished from smooth muscle cells by the presence of lateral branches and an inability to contract spontaneously or when depolarized. Depolarization elicited large outward currents. Penitrem A, a blocker of large conductance, Ca activated K+ channels, significantly decreased the outward current. Its Ca dependence was demonstrated by significant inhibition with nifedipine and Ca-free solution. When large conductance, Ca activated K+ and Ca currents were blocked with penitrem A and nifedipine, a voltage dependent current was unmasked, which activated positive to -50 mV and displayed voltage dependent inactivation with half-maximal inactivation occurring at -71 mV. It was blocked in concentration dependent fashion by tetraethylammonium but unaffected by 4-aminopyridine, charybdotoxin or apamin, suggesting that small and intermediate conductance, calcium activated potassium channels, and Kv1.2 and Kv1.3 channels are unlikely to be involved. At maximal concentrations of tetraethylammonium a portion of the voltage dependent K+ current remained that was not affected by any of the blockers tested. CONCLUSIONS: ICC-like cells from the detrusor possess calcium activated and voltage dependent K+ currents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Whole-cell and inside-out patch-clamp techniques were used to assess the action of a well-known dye, Evans blue, on membrane currents in bladder isolated smooth muscle cells from sheep. In whole cells Evans blue dose-dependently increased the outward current by up to fivefold. In contrast, Evans blue had no effect on inward Ca2+ current. The effect on outward current was abolished or reduced if the cells were bathed in Ca2+-free solution, iberiotoxin (5 x 10(-8) M), or charybdotoxin (5 x 10(-8) M), but was unaffected by externally applied caffeine (5 mM) or in cells exposed to heparin (1 mg/ml) via the patch pipette. In inside-out patches bathed in a Ca2+ concentration of 5 x 10(-7) M, Evans blue (10(-4) M) increased the open probability of large-conductance (298-pS) Ca2+-dependent K+ channels (BK channels), shifting the half maximal-activation voltage by -70 mV. We conclude that Evans blue dye acts as an opener of BK channels.