5 resultados para Plastics in packaging
Resumo:
Composites are fast becoming a cost effective option when considering the design of engineering structures in a broad range of applications. If the strength to weight benefits of these material systems can be exploited and challenges in developing lower cost manufacturing methods overcome, then the advanced composite systems will play a bigger role in the diverse range of sectors outside the aerospace industry where they have been used for decades.
This paper presents physical testing results that showcase the advantages of GRP (Glass Reinforced Plastics), such as the ability to endure loading with minimal deformation. The testing involved is a cross comparison of GRP grating vs. GRP encapsulated foam core. Resulting data gained within this paper will then be coupled with design optimization (utilising model simulation) to bring forward layup alterations to meet the specified load classifications involved.
Resumo:
The construction industry is one of the largest consumers of raw materials and energy and one of the highest contributor to green-houses gases emissions. In order to become more sustainable it needs to reduce the use of both raw materials and energy, thus lim-iting its environmental impact. Developing novel technologies to integrate secondary raw materials (i.e. lightweight recycled aggre-gates and alkali activated “cementless” binders - geopolymers) in the production cycle of concrete is an all-inclusive solution to im-prove both sustainability and cost-efficiency of construction industry. SUS-CON “SUStainable, Innovative and Energy-Efficiency CONcrete, based on the integration of all-waste materials” is an European project (duration 2012-2015), which aim was the inte-gration of secondary raw materials in the production cycle of concrete, thus resulting in innovative, sustainable and cost-effective building solutions. This paper presents the main outcomes related to the successful scaling-up of SUS-CON concrete solutions in traditional production plants. Two European industrial concrete producers have been involved, to design and produce both pre-cast components (blocks and panels) and ready-mixed concrete. Recycled polyurethane foams and mixed plastics were used as aggre-gates, PFA (Pulverized Fuel Ash, a by-product of coal fuelled power plants) and GGBS (Ground Granulated Blast furnace Slag, a by-product of iron and steel industries) as binders. Eventually, the installation of SUS-CON concrete solutions on real buildings has been demonstrated, with the construction of three mock-ups located in Europe (Spain, Turkey and Romania)
Resumo:
Rotational molding suffers from a relatively long cycle time, which hampers more widespread growth of the process. During each cycle, both the polymer and mold must be heated from room temperature to above polymer melting temperature and subsequently cooled to room temperature. The cooling time in this process is relatively long due to the poor thermal conductivity of plastics. Although rapid external cooling is possible, internal cooling rates are the major limitation. This causes the process to be uneconomical for large production runs of small parts. Various researchers have strived to minimize cycle times by applying various internal cooling procedures. This article presents a review of these methods, including computer simulations and practical investigations published to date. The effects of cooling rate on the morphology, shrinkage, warpage, and impact properties of rotationally molded polyolefins are also highlighted. In general, rapid and symmetrical cooling across the mold results in smaller spherulite size, increased mechanical properties and less potential warpage or distortion in moldings. POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers.
Resumo:
Fibre-reinforced mouldings are of growing interest to the rotational moulding industry due to their outstanding price performance ratio. However, a particular problem that arises when using reinforcements in this process is that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this paper we report on studies to incorporate, short glass fibres into rotationally moulded parts. Four different approaches were investigated; direct addition of fibre in between two powder shots, addition of a layer of pre-compounded polyethylene-glass fibre pellets between two powder shots, addition of a layer of pre-compounded polyethylene-glass fibre powder between two powder shots and a single layer of glass-reinforced, pre-compounded powder. Results indicate that pre-compounding is necessary to gain performance enhancement and the single layer part made from glass-reinforced, pre-compounded powder exhibited the highest tensile and flexural modulus.
Resumo:
A plasma gas bubble-in-liquid method for high production of selectable reactive species using a nanosecond pulse generator has been developed. The gas of choice is fed through a hollow needle in a point-to-plate bubble discharge, enabling improved selection of reactive species. The increased interface reactions, between the gas-plasma and water through bubbles, give higher productivity. H2O2 was the predominant species produced using Ar plasma, while predominantly and NO2 were generated using air plasma, in good agreement with the observed emission spectra. This method has nearly 100% selectivity for H2O2, with seven times higher production, and 92% selectivity for , with nearly twice the production, compared with a plasma above the water.