Internal cooling in rotational molding-A review
Data(s) |
01/09/2011
|
---|---|
Resumo |
<p>Rotational molding suffers from a relatively long cycle time, which hampers more widespread growth of the process. During each cycle, both the polymer and mold must be heated from room temperature to above polymer melting temperature and subsequently cooled to room temperature. The cooling time in this process is relatively long due to the poor thermal conductivity of plastics. Although rapid external cooling is possible, internal cooling rates are the major limitation. This causes the process to be uneconomical for large production runs of small parts. Various researchers have strived to minimize cycle times by applying various internal cooling procedures. This article presents a review of these methods, including computer simulations and practical investigations published to date. The effects of cooling rate on the morphology, shrinkage, warpage, and impact properties of rotationally molded polyolefins are also highlighted. In general, rapid and symmetrical cooling across the mold results in smaller spherulite size, increased mechanical properties and less potential warpage or distortion in moldings. POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers.</p> |
Identificador |
http://dx.doi.org/10.1002/pen.21973 http://www.scopus.com/inward/record.url?scp=80051689174&partnerID=8YFLogxK |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Tan , S B , Hornsby , P R , McAfee , M B , Kearns , M P & McCourt , M P 2011 , ' Internal cooling in rotational molding-A review ' Polymer Engineering and Science , vol 51 , no. 9 , pp. 1683-1692 . DOI: 10.1002/pen.21973 |
Palavras-Chave | #/dk/atira/pure/subjectarea/asjc/2500/2507 #Polymers and Plastics #/dk/atira/pure/subjectarea/asjc/2500/2505 #Materials Chemistry #/dk/atira/pure/subjectarea/asjc/1600 #Chemistry(all) |
Tipo |
article |