153 resultados para Fpga devices
Resumo:
For modern FPGA, implementation of memory intensive processing applications such as high end image and video processing systems necessitates manual design of complex multilevel memory hierarchies incorporating off-chip DDR and onchip BRAM and LUT RAM. In fact, automated synthesis of multi-level memory hierarchies is an open problem facing high level synthesis technologies for FPGA devices. In this paper we describe the first automated solution to this problem.
By exploiting a novel dataflow application modelling dialect, known as Valved Dataflow, we show for the first time how, not only can such architectures be automatically derived, but also that the resulting implementations support real-time processing for current image processing application standards such as H.264. We demonstrate the viability of this approach by reporting the performance and cost of hierarchies automatically generated for Motion Estimation, Matrix Multiplication and Sobel Edge Detection applications on Virtex-5 FPGA.
Resumo:
In this paper, a new field-programmable gate array (FPGA) identification generator circuit is introduced based on physically unclonable function (PUF) technology. The new identification generator is able to convert flip-flop delay path variations to unique n-bit digital identifiers (IDs), while requiring only a single slice per ID bit by using 1-bit ID cells formed as hard-macros. An exemplary 128-bit identification generator is implemented on ten Xilinx Spartan-6 FPGA devices. Experimental results show an uniqueness of 48.52%, and reliability of 92.41% over a 25°C to 70°C temperature range and 10% fluctuation in supply voltage
Resumo:
Side-channel attacks (SCA) threaten electronic cryptographic devices and can be carried out by monitoring the physical characteristics of security circuits. Differential Power Analysis (DPA) is one the most widely studied side-channel attacks. Numerous countermeasure techniques, such as Random Delay Insertion (RDI), have been proposed to reduce the risk of DPA attacks against cryptographic devices. The RDI technique was first proposed for microprocessors but it was shown to be unsuccessful when implemented on smartcards as it was vulnerable to a variant of the DPA attack known as the Sliding-Window DPA attack.Previous research by the authors investigated the use of the RDI countermeasure for Field Programmable Gate Array (FPGA) based cryptographic devices. A split-RDI technique wasproposed to improve the security of the RDI countermeasure. A set of critical parameters wasalso proposed that could be utilized in the design stage to optimize a security algorithm designwith RDI in terms of area, speed and power. The authors also showed that RDI is an efficientcountermeasure technique on FPGA in comparison to other countermeasures.In this article, a new RDI logic design is proposed that can be used to cost-efficiently implementRDI on FPGA devices. Sliding-Window DPA and realignment attacks, which were shown to beeffective against RDI implemented on smartcard devices, are performed on the improved RDIFPGA implementation. We demonstrate that these attacks are unsuccessful and we also proposea realignment technique that can be used to demonstrate the weakness of RDI implementations.
Resumo:
A new, single and unified Montgomery modular inverse algorithm, which performs both classical and Montgomery modular inversion, is proposed. This reduces the number of Montgomery multiplication operations required by 33% when compared with previous algorithms reported in the literature. The use of this in practice has been investigated by implementation of the improved unified algorithm and the previous algorithms on FPGA devices. The unified algorithm implementation shows a significant speed-up and a reduction in silicon area usage.
Resumo:
A Physical Unclonable Function (PUF) can be used to provide authentication of devices by producing die-unique responses. In PUFs based on ring oscillators (ROs) the responses are derived from the oscillation frequencies of the ROs. However, RO PUFs can be vulnerable to attack due to the frequency distribution characteristics of the RO arrays. In this letter, in order to improve the design of RO PUFs for FPGA devices, the frequencies of RO arrays implemented on a large number of FPGA chips are statistically analyzed. Three RO frequency distribution (ROFD) characteristics, which can be used to improve the design of RO PUFs are observed and discussed.
Resumo:
A Physical Unclonable Function (PUF) can be used to provide authentication of devices by producing die-unique responses. In PUFs based on ring oscillators (ROs), the responses are derived from the oscillation frequencies of the ROs. However, RO PUFs can be vulnerable to attack due to the frequency distribution characteristics of the RO arrays. In this paper, in order to improve the design of RO PUFs for FPGA devices, the frequencies of RO arrays implemented on a large number of FPGA chips are statistically analyzed. Three RO frequency distribution (ROFD) characteristics are observed and discussed. Based on these ROFD characteristics, two RO comparison strategies are proposed that can be used to improve the design of RO PUFs. It is found that the symmetrical RO comparison strategy has the highest entropy density.
Resumo:
A generic, parameterisable key scheduling core is presented, which can be utilised in pipelinable private-key encryption algorithms. The data encryption standard (DES) algorithm, which lends itself readily to pipelining, is utilised to exemplify this novel key scheduling method and the broader applicability of the method to other encryption algorithms is illustrated. The DES design is implemented on Xilinx Virtex FPGA technology. Utilising the novel method, a 16-stage pipelined DES design is achieved, which can run at an encryption rate of 3.87 Gbit/s. This result is among the fastest hardware implementations and is a factor 28 times faster than software implementations.
Resumo:
Field programmable gate array devices boast abundant resources with which custom accelerator components for signal, image and data processing may be realised; however, realising high performance, low cost accelerators currently demands manual register transfer level design. Software-programmable ’soft’ processors have been proposed as a way to reduce this design burden but they are unable to support performance and cost comparable to custom circuits. This paper proposes a new soft processing approach for FPGA which promises to overcome this barrier. A high performance, fine-grained streaming processor, known as a Streaming Accelerator Element, is proposed which realises accelerators as large scale custom multicore networks. By adopting a streaming execution approach with advanced program control and memory addressing capabilities, typical program inefficiencies can be almost completely eliminated to enable performance and cost which are unprecedented amongst software-programmable solutions. When used to realise accelerators for fast fourier transform, motion estimation, matrix multiplication and sobel edge detection it is shown how the proposed architecture enables real-time performance and with performance and cost comparable with hand-crafted custom circuit accelerators and up to two orders of magnitude beyond existing soft processors.
Resumo:
This paper presents a multi-language framework to FPGA hardware development which aims to satisfy the dual requirement of high-level hardware design and efficient hardware implementation. The central idea of this framework is the integration of different hardware languages in a way that harnesses the best features of each language. This is illustrated in this paper by the integration of two hardware languages in the form of HIDE: a structured hardware language which provides more abstract and elegant hardware descriptions and compositions than are possible in traditional hardware description languages such as VHDL or Verilog, and Handel-C: an ANSI C-like hardware language which allows software and hardware engineers alike to target FPGAs from high-level algorithmic descriptions. On the one hand, HIDE has proven to be very successful in the description and generation of highly optimised parameterisable FPGA circuits from geometric descriptions. On the other hand, Handel-C has also proven to be very successful in the rapid design and prototyping of FPGA circuits from algorithmic application descriptions. The proposed integrated framework hence harnesses HIDE for the generation of highly optimised circuits for regular parts of algorithms, while Handel-C is used as a top-level design language from which HIDE functionality is dynamically invoked. The overall message of this paper posits that there need not be an exclusive choice between different hardware design flows. Rather, an integrated framework where different design flows can seamlessly interoperate should be adopted. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware languages.