36 resultados para Constant hysteresis
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.
Resumo:
The characterization of thermocouple sensors for temperature measurement in varying-flow environments is a challenging problem. Recently, the authors introduced novel difference-equation-based algorithms that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. In particular, a linear least squares (LS) lambda formulation of the characterization problem, which yields unbiased estimates when identified using generalized total LS, was introduced. These algorithms assume that time constants do not change during operation and are, therefore, appropriate for temperature measurement in homogenous constant-velocity liquid or gas flows. This paper develops an alternative ß-formulation of the characterization problem that has the major advantage of allowing exploitation of a priori knowledge of the ratio of the sensor time constants, thereby facilitating the implementation of computationally efficient algorithms that are less sensitive to measurement noise. A number of variants of the ß-formulation are developed, and appropriate unbiased estimators are identified. Monte Carlo simulation results are used to support the analysis.
Resumo:
In situ ellipsometry and Kerr polarimetry have been used to follow the continuous evolution of the optical and magneto- optical properties of multiple layers of Co and Pd during their growth. Films were sputter deposited onto a Pd buffer layer on glass substrates up to a maximum of N = 10 bi-layer periods according to the scheme glass/Pd(10)Ar x (0.3Co/3Pd) (nm). Magnetic hysteresis measurements taken during the deposition consistently showed strong perpendicular anisotropy at all stages of film growth following the deposition of a single monolayer of Co. Magneto-optic signals associated with the normal-incidence polar Kerr effect indicated strong polarization of Pd atoms at both Co-Pd and Pd-Co interfaces and that the magnitude of the complex magneto-optic Voigt parameter and the magnetic moment of the Pd decrease exponentially with distance from the interface with a decay constant of 1.1 nm(- 1). Theoretical simulations have provided an understanding of the observations and allow the determination of the ultrathin- film values of the elements of the skew-symmetric permittivity tensor that describe the optical and magneto-optical properties for both CO and Pd. Detailed structure in the observed Kerr ellipticity shows distinct Pd-thickness-dependent oscillations with a spatial period of about 1.6 nm that are believed to be associated with quantum well levels in the growing Pd layer.
Resumo:
Thin film capacitor structures in which the dielectric is composed of superlattices of the relaxors [0.2Pb(Zn1/3Nb2/3)O- 3-0.8BaTiO(3)] and Pb(Mg1/3Nb2/3)O-3 have been fabricated by pulsed laser deposition. Superlattice wavelength (Lambda) was varied between similar to3 and similar to 600 nm, and dielectric properties were investigated as a function of Lambda. Progressive enhancement of the dielectric constant was observed on decreasing Lambda, and, in contrast to previous work, this was not associated with the onset of Maxwell-Wagner behavior. Polarization measurements as a function of temperature suggested that the observed enhancement in dielectric constant was associated with the onset of a coupled response. The superlattice wavelength (Lambda =20 nm) at which coupled functional behavior became apparent is comparable to that found in literature for the onset of coupled structural behavior (between Lambda =5 nm and Lambda =10 nm). (C) 2001 American Institute of Physics.
Resumo:
We present a practical scheme for performing ab initio supercell calculations of charged slabs at constant electron chemical potential mu, rather than at constant number of electrons N-e. To this end, we define the chemical potential relative to a plane (or "reference electrode") at a finite distance from the slab (the distance should reflect the particular geometry of the situation being modeled). To avoid a net charge in the supercell, and thus make possible a standard supercell calculation, we restore the electroneutrality of the periodically repeated unit by means of a compensating charge, whose contribution to the total energy and potential is subtracted afterwards. The "constant mu" mode enables one to perform supercell calculation on slabs, where the slab is kept at a fixed potential relative to the reference electrode. We expect this to be useful in modeling many experimental situations, especially in electro-chemistry. (C) 2001 American Institute of Physics.
Resumo:
An experimental investigation of the argon plasma behavior near the E-H transition in an inductively coupled Gaseous Electronics Conference reference cell is reported. Electron density and temperature, ion density, argon metastable density, and optical emission measurements have been made as function of input power and gas pressure. When plotted versus plasma power, applied power corrected for coil and hardware losses, no hysteresis is observed in the measured plasma parameter dependence at the E-H mode transition. This suggests that hysteresis in the E-H mode transition is due to ignoring inherent power loss, primarily in the matching system.
Resumo:
A new method of dielectric-constant measurement is developed. The dielectric constant epsilon(r) RF/microwave substrate is extracted by combining the microstrip ring resonator measurement with Ansoft HFSS electromagnetic simulation software. The developed method has two advantages: (i) characterization of dielectric constant versus multiple frequency points, and (ii) compatibility with electronics design automation (EDA) software tools. This characterization method can reduce the design cycle of microwave circuits and devices. (C) 2004 Wiley Periodicals, Inc.
Resumo:
This paper describes the use of the Euler equations for the generation and testing of tabular aerodynamic models for flight dynamics analysis. Maneuvers for the AGARD Standard Dynamics Model sharp leading-edge wind-tunnel geometry are considered as a test case. Wind-tunnel data is first used to validate the prediction of static and dynamic coefficients at both low and high angles, featuring complex vortical flow, with good agreement obtained at low to moderate angles of attack. Then the generation of aerodynamic tables is described based on a data fusion approach. Time-optimal maneuvers are generated based on these tables, including level flight trim, pull-ups at constant and varying incidence, and level and 90 degrees turns. The maneuver definition includes the aircraft states and also the control deflections to achieve the motion. The main point of the paper is then to assess the validity of the aerodynamic tables which were used to define the maneuvers. This is done by replaying them, including the control surface motions, through the time accurate computational fluid dynamics code. The resulting forces and moments are compared with the tabular values to assess the presence of inadequately modeled dynamic or unsteady effects. The agreement between the tables and the replay is demonstrated for slow maneuvers. Increasing rate maneuvers show discrepancies which are ascribed to vortical flow hysteresis at the higher rate motions. The framework is suitable for application to more complex viscous flow models, and is powerful for the assessment of the validity of aerodynamics models of the type currently used for studies of flight dynamics.
Resumo:
The aim of this paper is to increase the performance of hysteresis compensation for Shape Memory Alloy (SMA) actuators by using inverse Preisach model in closed — loop control system. This is used to reduce hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in closed-loop PID control system in order to obtain desired current-to-displacement relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.
Resumo:
Background: One-carbon metabolism involves both mitochondrial and cytosolic forms of folate-dependent enzymes in mammalian cells, but few in vivo data exist to characterize the biochemical processes involved.
Objective: We conducted a stable-isotopic investigation to determine the fates of exogenous serine and serine-derived one carbon units in homocysteine remethylation in hepatic and whole-body metabolism.
Design: A healthy man aged 23 y was administered [2,3,3 H-2(3)]serine and [5,5,5-H-2(3)]leucine by intravenous primed, constant infusion. Serial plasma samples were analyzed to determine the isotopic enrichment of free glycine, serine, leucine, methionine, and cystathionine. VLDL apolipoprotein B-100 served as an index of liver free amino acid labeling.
Results: [H-2(1)]Methionine and [H-2(2)]methionine were labeled through homocysteine remethylation. We propose that [H-2(2)]methionine occurs by remethylation with [H-2(2)]methyl groups (as 5-methyltetrahydrofolate) formed only from cytosolic processing of [H-2(3)]serine, whereas [H-2(1)]methionine is formed with labeled one-carbon units from mitochondrial oxidation of C-3 serine to [H-2(1)]formate to yield cytosolic [H-2(1)]methyl groups. The labeling pattern of cystathionine formed from homocysteine and labeled serine suggests that cystathionine is derived mainly from a serine pool different from that used in apolipoprotein B-100 synthesis.
Conclusions: The appearance of both [H-2(1)]- and [H-2(2)]methionine forms indicates that both cytosolic and mitochondrial metabolism of exogenous serine generates carbon units in vivo for methyl group production and homocysteine remethylation. This study also showed the utility of serine infusion and indicated functional roles of cytosolic and mitochondrial compartments in one-carbon metabolism.