37 resultados para Colloidal self-assembly


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field configured assembly is a programmable force field method that permits rapid, "hands-free" manipulation, assembly, and integration of mesoscale objects and devices. In this method, electric fields, configured by specific addressing of receptor and counter electrode sites pre-patterned at a silicon chip substrate, drive the field assisted transport, positioning, and localization of mesoscale devices at selected receptor locations. Using this approach, we demonstrate field configured deterministic and stochastic self-assembly of model mesoscale devices, i.e., 50 mum diameter, 670 nm emitting GaAs-based light emitting diodes, at targeted receptor sites on a silicon chip. The versatility of the field configured assembly method suggests that it is applicable to self-assembly of a wide variety of functionally integrated nanoscale and mesoscale systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A substantial set of ion-driven molecular logic gates are implemented in turn by arranging the association between easily available lumophores and receptors in detergent micelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disguising a metal complex as a micelle by using amphiphilic phosphine ligands enables it to switch between a coordination polymer and a discrete cage in response to solvent polarity or pH; this medium-dependent behaviour of the complex is rational because it parallels that of true micelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled electrodeposited nanorod materials have been shown to offer an exciting landscape for a wide array of research ranging from nanophotonics through to biosening and magnetics. However, until now, the scope for site-specific preparation of the nanorods on wafers is limited to local area definition. Further there is little or no lateral control of nanorod height. In this work we present a scalable method for controlling the growth of the nanorods in the vertical direction as well as their lateral position. A focused ion beam (FIB) pre-patterns the Au cathode layer prior to the creation of the Anodized Aluminium Oxide (AAO) template on top. When the pre-patterning is of the same dimension to the pore spacing of the AAO template, lines of single nanorods are successfully grown. Further, for sub-200 nm wide features a relationship between the nanorod height and distance from non-patterned cathode can be seen to follow a quadratic growth rate obeying Faradays law of electrodeposition. This facilitates lateral control of nanorod height combined with localised growth of the nanorods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we report the intra- and inter-molecular assembly of a {V5O9} subunit. This mixed-valent structural motif can be stabilised as [V5O9(L1–3)4]5−/9− (1–3) by a range of organoarsonate ligands (L1–L3) whose secondary functionalities influence its packing arrangement within the crystal structures. Variation of the reaction conditions results in the dodecanuclear cage structure [V12O14(OH)4(L1)10]4− (4) where two modified convex building units are linked via two dimeric {O4VIV(OH)2VIVO4} moieties. Bi-functional phosphonate ligands, L4–L6 allow the intramolecular connectivity of the {V5O9} subunit to give hybrid capsules [V10O18(L4–6)4]10− (5–7). The dimensions of the electrophilic cavities of the capsular entities are determined by the incorporated ligand type. Mass spectrometry experiments confirm the stability of the complexes in solution. We investigate and model the temperature-dependent magnetic properties of representative complexes 1, 4, 6 and 7 and provide preliminary cell-viability studies of three different cancer cell lines with respect to Na8H2[6]·36H2O and Na8H2[7]·2DMF·29H2O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large areas of perfectly ordered magnetic CoFe2O4 nanopillars embedded in a ferroelectric BiFeO3 matrix were successfully fabricated via a novel nucleation-induced self-assembly process. The nucleation centers of the magnetic pillars are induced before the growth of the composite structure using anodic aluminum oxide (AAO) and lithography-defined gold membranes as hard mask. High structural quality and good functional properties were obtained. Magneto-capacitance data revealed extremely low losses and magneto-electric coupling of about 0.9 mu C/cmOe. The present fabrication process might be relevant for inducing ordering in systems based on phase separation, as the nucleation and growth is a rather general feature of these systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic molecules have well defined, three-dimensional branched architectures, and constitute a unique nanoscale toolkit. This review focuses on examples in which individual dendritic molecules are assembled into more complex arrays via non-covalent interactions. In particular, it illustrates how the structural information programmed into the dendritic architecture controls the assembly process, and as a consequence, the properties of the supramolecular structures which are generated. Furthermore, the review emphasises how the use of non-covalent (supramolecular) interactions, provides the assembly process with reversibility, and hence a high degree of control. The review also illustrates how self-assembly offers an ideal approach for amplifying the branching of small, synthetically accessible, relatively inexpensive dendritic systems (e.g. dendrons), into highly branched complex nanoscale assemblies.

The review begins by considering the assembly of dendritic molecules to generate discrete, well-defined supramolecular assemblies. The variety of possible assembled structures is illustrated, and the ability of an assembled structure to encapsulate a templating unit is described. The ability of both organic and inorganic building blocks to direct the assembly process is discussed. The review then describes larger discrete assemblies of dendritic molecules, which do not exist as a single well-defined species, but instead exist as statistical distributions. For example, assembly around nanoparticles, the assembly of amphiphilic dendrons and the assembly of dendritic systems in the presence of DNA will all be discussed. Finally, the review examines dendritic molecules, which assemble or order themselves into extended arrays. Such systems extend beyond the nanoscale into the microscale or even the macroscale domain, exhibiting a wide range of different architectures. The ability of these assemblies to act as gel-phase or liquid crystalline materials will be considered.

Taken as a whole, this review emphasises the control and tunability that underpins the assembly of nanomaterials using dendritic building blocks, and furthermore highlights the potential future applications of these assemblies at the interfaces between chemistry, biology and materials science. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of bacteria in the natural environment live within the confines of a biofilm. The Gram-positive bacterium Bacillus subtilis forms biofilms that exhibit a characteristic wrinkled morphology and a highly hydrophobic surface. A critical component in generating these properties is the protein BslA, which forms a coat across the surface of the sessile community. We recently reported the structure of BslA, and noted the presence of a large surface-exposed hydrophobic patch. Such surface patches are also observed in the class of surface-active proteins known as hydrophobins, and are thought to mediate their interfacial activity. However, although functionally related to the hydrophobins, BslA shares no sequence nor structural similarity, and here we show that the mechanism of action is also distinct. Specifically, our results suggest that the amino acids making up the large, surface-exposed hydrophobic cap in the crystal structure are shielded in aqueous solution by adopting a random coil conformation, enabling the protein to be soluble and monomeric. At an interface, these cap residues refold, inserting the hydrophobic side chains into the air or oil phase and forming a three-stranded β-sheet. This form then self-assembles into a well-ordered 2D rectangular lattice that stabilizes the interface. By replacing a hydrophobic leucine in the center of the cap with a positively charged lysine, we changed the energetics of adsorption and disrupted the formation of the 2D lattice. This limited structural metamorphosis represents a previously unidentified environmentally responsive mechanism for interfacial stabilization by proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lack of suitable high-performance cathode materials has become the major barrier to their applications in future advanced communication equipment and electric vehicle power systems. In this paper, we have developed a layer-by-layer self-assembly approach for fabricating a novel sandwich nanoarchitecture of multilayered LiV3O8 nanoparticle/graphene nanosheet (M-nLVO/GN) hybrid electrodes for potential use in high performance lithium ion batteries by using a porous Ni foam as a substrate. The prepared sandwich nanoarchitecture of M-nLVO/GN hybrid electrodes exhibited high performance as a cathode material for lithium-ion batteries, such as high reversible specific capacity (235 mA h g-1 at a current density of 0.3 A g-1), high coulombic efficiency (over 98%), fast rate capability (up to a current density of 10 A g-1), and superior capacity retention during cycling (90% capacity retention with a current density of 0.3 A g-1 after 300 cycles). Very significantly, this novel insight into the design and synthesis of sandwich nanoarchitecture would extend their application to various electrochemical energy storage devices, such as fuel cells and supercapacitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, an economical route based on hydrothermal and layer-by-layer (LBL) self-assembly processes has been developed to synthesize unique Al 2O3-modified LiV3O8 nanosheets, comprising a core of LiV3O8 nanosheets and a thin Al 2O3 nanolayer. The thickness of the Al2O 3 nanolayer can be tuned by altering the LBL cycles. When evaluated for their lithium-storage properties, the 1 LBL Al2O 3-modified LiV3O8 nanosheets exhibit a high discharge capacity of 191 mA h g-1 at 300 mA g-1 (1C) over 200 cycles and excellent rate capability, demonstrating that enhanced physical and/or chemical properties can be achieved through proper surface modification. © 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the self-assembly of a new family of hydrophobic,bis(pyridyl) PtII complexes featuring an extendedoligophenyleneethynylene-derived π-surface appended withsix long (dodecyloxy (2)) or short (methoxy (3)) side groups.Complex 2, containing dodecyloxy chains, forms fibrous assemblies with a slipped arrangement of the monomer units (dPt···Pt… =14 Å) in both nonpolar solvents and the solid state.Dispersion-corrected PM6 calculations suggest that this organizationis driven by cooperative π–π, C-H···Cl and π–Pt interactions, which is supported by EXAFS and 2D NMR spectroscopic analysis. In contrast, nearly parallel π-stacks (dPt···Pt… = 4.4 Å) stabilized by multiple π–π and C-H···Cl contact sare obtained in the crystalline state for 3 lacking longside chains, as shown by X-ray analysis and PM6 calculations.Our results reveal not only the key role of alkyl chain lengthin controlling self-assembly modes but also show the relevanceof Pt-bound chlorine ligands as new supramolecular synthons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brightest and most vivid colours in nature arise from the interaction of light with surfaces that exhibit periodic structure on the micro- and nanoscale. In the wings of butterflies, for example, a combination of multilayer interference, optical gratings, photonic crystals and other optical structures gives rise to complex colour mixing. Although the physics of structural colours is well understood, it remains a challenge to create artificial replicas of natural photonic structures(1-3). Here we use a combination of layer deposition techniques, including colloidal self-assembly, sputtering and atomic layer deposition, to fabricate photonic structures that mimic the colour mixing effect found on the wings of the Indonesian butterfly Papilio blumei. We also show that a conceptual variation to the natural structure leads to enhanced optical properties. Our approach offers improved efficiency, versatility and scalability compared with previous approaches(4-6).