186 resultados para Biotechnology and applied microbiology
Resumo:
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized - or at least partially vacant - habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.
Resumo:
Increased complexity in large design and manufacturing organisations requires improvements at the operations management (OM)–applied service (AS) interface areas to improve project effectiveness. The aim of this paper is explore the role of Lean in improving the longitudinal efficiency of the OM–AS interface within a large aerospace organisation using Lean principles and boundary spanning theory. The methodology was an exploratory longitudinal case approach including exploratory interviews (n = 21), focus groups (n = 2), facilitated action-research workshops (n = 2) and two trials or experiments using longitudinal data involving both OM and AS personnel working at the interface. The findings draw upon Lean principles and boundary spanning theory to guide and interpret the findings. It was found that misinterpretation, and forced implementation, of OM-based Lean terminology and practice in the OM–AS interface space led to delays and misplaced resources. Rather both OM and AS staff were challenged to develop a cross boundary understanding of Lean-based boundary (knowledge) objects in interpreting OM requests. The longitudinal findings from the experiments showed that the development of Lean Performance measurements and lean Value Stream constructs was more successful when these Lean constructs were treated as boundary (knowledge) objects requiring transformation over time to orchestrate improved effectiveness and in leading to consistent terminology and understanding between the OM–AS boundary spanning team.
Resumo:
The recombinant production of a respiratory syncytial virus (RSV) candidate vaccine BBG2Na in baby hamster kidney cells (BHK-21 cells) was investigated. BBG2Na consists of a serum-albumin-binding region (BB) fused to a 101-amino-acid fragment of the RSV G-protein. Semliki Forest virus-based expression vectors encoding both intracellular and secreted forms of BBG2Na were constructed and found to be functional. Affinity recovery of BBG2Na employing human serum albumin columns was found to be inefficient due to the abundance of BSA in the applied samples. Instead, a strategy using a tailor-made affinity ligand based on a combinatorially engineered Staphylococcus aureus protein A domain, showing specific binding to the G-protein part of the product, was evaluated. In conclusion, a strategy for production and successful recovery of BBG2Na in mammalian cells was created, through the development of a product-specific affinity column.
Resumo:
More than 200 known diseases are transmitted via foods or food products. In the United States, food-borne diseases are responsible for 76 million cases of illness, 32,500 cases of hospitalisation and 5000 cases of death yearly. The ongoing increase in worldwide trade in livestock, food, and food products in combination with increase in human mobility (business- and leisure travel, emigration etc.) will increase the risk of emergence and spreading of such pathogens. There is therefore an urgent need for development of rapid, efficient and reliable methods for detection and identification of such pathogens.
Microchipfabrication has had a major impact on electronics and is expected to have an equally pronounced effect on life sciences. By combining micro-fluidics with micromechanics, micro-optics, and microelectronics, systems can be realized to perform complete chemical or biochemical analyses. These socalled ’Lab-on-a-Chip’ will completely change the face of laboratories in the future where smaller, fully automated devices will be able to perform assays faster, more accurately, and at a lower cost than equipment of today. A general introduction of food safety and applied micro-nanotechnology in life sciences will be given. In addition, examples of DNA micro arrays, micro fabricated integrated PCR chips and total integrated lab-on-achip systems from different National and EU research projects being carried out at the Laboratory of Applied Micro- Nanotechnology (LAMINATE) group at the National Veterinary Institute (DTU-Vet) Technical University of Denmark and the BioLabchip group at the Department of Micro and Nanotechnology (DTU-Nanotech), Technical University of Denmark (DTU), Ikerlan-IK4 (Spain) and other 16 partners from different European countries will be presented.
Resumo:
It is standard clinical practice to use a combination of two or more antimicrobial agents to treat an infection caused by Pseudonionas aeruginosa. The antibiotic combinations are usually selected empirically with methods to determine the antimicrobial effect of the combination such as the time-kill assay rarely used as they are time-consuming and labour intensive to perforin. Here, we report a modified time-kill assay, based on the reduction of the tetrazolium salt, 2,3-bis[2-methyloxy-4-nitro-5-sulfopheny1]-2H-tetrazolium-5-carboxanilide (XTT), that allows simple, inexpensive and more rapid determination of the in vitro activity of antibiotic combinations against P aeruginosa. The assay was used to determine the in vitro activity of ceftazidime and tobramycin in combination against P. aertiginosa isolates from cystic fibrosis patients and the results obtained compared with those from conventional viable count time-kill assays. There was good agreement in interpretation of results obtained by the XTT and conventional viable count assays, with similar growth curves apparent and the most effective concentration combinations determined by both methods identical for all isolates tested. The XTT assay clearly indicated whether an antibiotic combination had a synergistic, indifferent or antagonistic effect and could, therefore, provide a useful method for rapidly determining the activity of a large number of antibiotic combinations against clinical isolates. (C) 2004 Elsevier B.V. All rights reserved.