97 resultados para ABUNDANCES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution, high signal-to-noise spectral data are presented for four young B-type stars lying towards the Galactic Centre. Determination of their atmospheric parameters from their absorption line profiles, and uvby photometric measurement of the continua indicate that they are massive objects lying slightly out of the plane, and were probably born in the disk between 2.5-5 kpc from the Centre. We have carried out a detailed absolute and differential line-by-line abundance analyses of the four stars compared to two stars with very similar atmospheric parameters in the solar neighbourhood. The stars appear to be rich in all the well sampled chemical elements (C, N, Si, Mg, S, Al), except for oxygen. Oxygen abundances derived in the atmospheres of these four stars are very similar to that in the solar neighbourhood. If the photospheric composition of these young stars is reflective of the gaseous ISM in the inner Galaxy, then the values derived for the enhanced metals are in excellent agreement with the extrapolation of the Galactic abundance gradients previously derived by Rolleston et al. (2000) and others. However, the data for oxygen suggests that the inner Galaxy may not be richer than normal in this element, and the physical reasons for such a scenario are unclear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron abundances have been derived for seven main-sequence B- type stars from Hubble Space Telescope STIS spectra around the B III lambda2066 line. In two stars, boron appears to be undepleted with respect to the presumed initial abundance. In one star, boron is detectable but is clearly depleted. In the other four stars, boron is undetectable, implying depletions of 1-2 dex. Three of these four stars are nitrogen enriched, but the fourth shows no enrichment of nitrogen. Only rotationally induced mixing predicts that boron depletions are unaccompanied by nitrogen enrichments. The inferred rate of boron depletion from our observations is in good agreement with these predictions. Other boron-depleted nitrogen-normal stars are identified from the literature. In addition, several boron- depleted nitrogen-rich stars are identified, and while all fall on the boron-nitrogen trend predicted by rotationally induced mixing, a majority have nitrogen enrichments that are not uniquely explained by rotation. The spectra have also been used to determine iron group (Cr, Mn, Fe, and Ni) abundances. The seven B-type stars have near-solar iron group abundances, as expected for young stars in the solar neighborhood. We have also analyzed the halo B-type star PG 0832 + 676. We find [Fe/H] = -0.88 +/- 0.10, and the absence of the B III line gives the upper limit [B/H] <-2.5. These and other published abundances are used to infer the star's evolutionary status as a post-asymptotic giant branch star.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present Ca II K (lambda(air) = 3933.661 angstrom) interstellar observations towards 20 early-type stars, to place lower distance limits to intermediate- and high-velocity clouds (IHVCs) in their lines of sight. The spectra are also employed to estimate the Ca abundance in the low-velocity gas towards these objects, when combined with Leiden-Dwingeloo 21-cm HI survey data of spatial resolution 0 degrees.5. Nine of the stars, which lie towards IHVC complexes H, K and gp, were observed with the intermediate dispersion spectrograph on the Isaac Newton Telescope at a resolution R = lambda/Delta lambda of 9000 (similar to 33 km s(-1)) and signal-to-noise ratio (S/N) per pixel of 75-140. A further nine objects were observed with the Utrecht Echelle Spectrograph on the William Herschel Telescope at R = 40 000 (similar to 7.5 km s(-1)) and S/N per pixel of 10-25. Finally, two objects were observed in both Ca II K and Na I D lines using the 2D COUDE on the McDonald 2.7-m telescope at R = 35 000 (similar to 8.5 km s(-1)). The abundance of Ca II K {log(10)(A) = log(10)[N(Ca II K)]-log(10)[N(HI)]} plotted against HI column density for the objects in the current sample with heights above the Galactic plane (z) exceeding 1000 pc is found to obey the Wakker & Mathis (2000) relation. Also, the reduced column density of Ca II K as function of z is consistent with the larger sample taken from Smoker et al. (2003). Higher S/N observations than those previously taken towards HVC complex H stars HD 13256 and HILT 190 reinforce the assertion that this lies at a distance exceeding 4000 pc. No obvious absorption is detected in observations of ALS 10407 and HD 357657 towards IVC complex gp. The latter star has a spectroscopically estimated distance of similar to 2040 pc, although this was derived assuming the star lies on the main sequence and without any reddening correction being applied. Finally, no Ca II K absorption is detected towards two stars along the line of sight to complex K, namely PG 1610+529 and PG 1710+490. The latter is at a distance of similar to 700 pc, hence placing a lower distance limit to this complex, where previously only an upper distance limit of 6800 pc was available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present high quality spectroscopic data for two massive stars in the OB 10 association of M31, OB 10-64 (B0 la) and OB 10-WRI (WC6). Medium resolution spectra of both stars were obtained using the ISIS spectrograph on the William Herschel Telescope. This is supplemented with Hubble Space Telescope STIS UV spectroscopy and Keck I HIRES data for OB 10-64. A non- local thermodynamic equilibrium (LTE) model atmosphere and abundance analysis for OB 10-64 is presented, indicating that this star has similar photospheric CNO, Mg and Si abundances to solar neighbourhood massive stars. A wind analysis of this early B-type supergiant reveals a mass-loss rate of (M)over dot = 1.6 x 10(-6) M-circle dot yr(-1), and v(infinity) = 1650 km s(-1). The corresponding wind momentum is in good agreement with the wind momentum-luminosity relationship found for Galactic early-B supergiants. Observations of OB 10-WRI are analysed using a non-LTE, line-blanketed code, to reveal approximate stellar parameters of log L/L-circle dot similar to 5.7, T-* - 75 kK, v(infinity) similar to 3000 km s(-1), (M)over dot/(M-circle dot yr(-1)) similar to 10(-4.3) adopting a clumped wind with a filling factor of 10 per cent. Quantitative comparisons are made with the Galactic WC6 star HD 92809 (WR23) revealing that OB 10-WR1 is 0.4 dex more luminous, though it has a much lower C/He ratio (similar to0.1 versus 0.3 for HD 92809). Our study represents the first detailed, chemical model atmosphere analysis for either a B-type supergiant or a Wolf- Rayet (WR) star in Andromeda, and shows the potential of how such studies can provide new information on the chemical evolution of galaxies and the evolution of massive stars in the local Universe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of high resolution VLT-FLAMES spectra of 61 B-type stars with relatively narrow-lined spectra located in 4 fields centered on the Milky Way clusters; NGC 3293 and NGC 4755 and the Large and Small Magellanic cloud clusters; NGC 2004 and NGC 330. For each object a quantitative analysis was carried out using the non-LTE model atmosphere code TLUSTY; resulting in the determination of their atmospheric parameters and photospheric abundances of the dominant metal species (C, N, O, Mg, Si, Fe). The results are discussed in relation to our earlier work on 3 younger clusters in these galaxies; NGC 6611, N11 and NGC 346 paying particular attention to the nitrogen abundances which are an important probe of the role of rotation in the evolution of stars. This work along with that of the younger clusters provides a consistent dataset of abundances and atmospheric parameters for over 100 B-type stars in the three galaxies. We provide effective temperature scales for B-type dwarfs in all three galaxies and for giants and supergiants in the SMC and LMC. In each galaxy a dependence on luminosity is found between the three classes with the unevolved dwarf objects having significantly higher effective temperatures. A metallicity dependence is present between the SMC and Galactic dwarf objects, and whilst the LMC stars are only slightly cooler than the SMC stars, they are significantly hotter than their Galactic counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution optical and ultraviolet (UV) spectra of two B-type post-asymptotic giant branch (post-AGB) stars in globular clusters, Barnard29 in M13 and ROA5701 in ?Cen, have been analysed using model atmosphere techniques. The optical spectra have been obtained with FEROS on the ESO 2.2-m telescope and the 2d-Coudé spectrograph on the 2.7-m McDonald telescope, while the UV observations are from the Goddard high-resolution spectrograph on the Hubble Space Telescope (HST). Abundances of light elements (C, N, O, Mg, Al and S) plus Fe have been determined from the optical spectra, while the UV data provide additional Fe abundance estimates from FeIII absorption lines in the 1875-1900 Å wavelength region. A general metal underabundance relative to young B-type stars is found for both Barnard29 and ROA5701. These results are consistent with the metallicities of the respective clusters, as well as with previous studies of the objects. The derived abundance patterns suggest that the stars have not undergone a gas-dust separation, contrary to previous suggestions, although they may have evolved from the AGB before the onset of the third dredge-up. However, the Fe abundances derived from the HST spectra are lower than those expected from the metallicities of the respective clusters, by 0.5 dex for Barnard29 and 0.8 dex for ROA5701. A similar systematic underabundance is also found for other B-type stars in environments of known metallicity, such as the Magellanic Clouds. These results indicate that the FeIII UV lines may yield abundance values which are systematically too low by typically 0.6 dex and hence such estimates should be treated with caution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of optical FeIII absorption lines in B-type stars as iron abundance diagnostics is considered. To date, ultraviolet Fe lines have been widely used in B-type stars, although line blending can severely hinder their diagnostic power. Using optical spectra, covering a wavelength range ~3560-9200Å, a sample of Galactic B-type main-sequence and supergiant stars of spectral types B0.5 to B7 are investigated. A comparison of the observed FeIII spectra of supergiants, and those predicted from the model atmosphere codes TLUSTY [plane-parallel, non-local thermodynamic equilibrium (LTE)], with spectra generated using SYNSPEC (LTE), and CMFGEN (spherical, non-LTE), reveal that non-LTE effects appear small. In addition, a sample of main-sequence and supergiant objects, observed with the Fiber-fed Extended Range Optical Spectrograph (FEROS), reveal LTE abundance estimates consistent with the Galactic environment and previous optical studies. Based on the present study, we list a number of FeIII transitions which we recommend for estimating the iron abundance from early B-type stellar spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results based on mid-infrared (3.6-30 mm) observations with the Spitzer Space Telescope of the nearby Type IIP supernova 2005af. We report the first ever detection of the SiO molecule in a Type IIP supernova. Together with the detection of the CO fundamental, this is an exciting finding as it may signal the onset of dust condensation in the ejecta. From a wealth of fine-structure lines we provide abundance estimates for stable Ni, Ar, and Ne that, via spectral synthesis, may be used to constrain nucleosynthesis models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detections of CO, CS, SO, C2H, HCO+, HCN, HNC, H2CO, and C3H2 are reported from LIRS 36, a star-forming region in the Small Magellanic Cloud. (CO)-O-18, NO, CH3OH, and most notably CN have not been detected, while the rare isotopes (CO)-C-13 and, tentatively, (CS)-S-34 ar,seen. This is so far the most extensive molecular multiline study of an interstellar medium with a heavy element depletion exceeding a factor of four.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nine H II regions of the LMC were mapped in (CO)-C-13(1-0) and three in (CO)-C-12(1-0) to study the physical properties of the interstellar medium in the Magellanic Clouds. For N113 the molecular core is found to have a peak position which differs from that of the associated H II region by 20 ''. Toward this molecular core the (CO)-C-12 and (CO)-C-13 peak T-MB line temperatures of 7.3 K and 1.2 K are the highest so far found in the Magellanic Clouds. The molecular concentrations associated with N113, N44BC, N159HW, and N214DE in the LMC and LIRS 36 in the SMC were investigated in a variety of molecular species to study the chemical properties of the interstellar medium. I(HCO+)/I(HCN) and I(HCN)/I(HNC) intensity ratios as well as lower limits to the I((CO)-C-13)/I((CO)-O-18) ratio were derived for the rotational 1-0 transitions. Generally, HCO+ is stronger than HCN, and HCN is stronger than HNC. The high relative HCO+ intensities are consistent with a high ionization flux from supernovae remnants and young stars, possibly coupled with a large extent of the HCO+ emission region. The bulk of the HCN arises from relatively compact dense cloud cores. Warm or shocked gas enhances HCN relative to HNC. From chemical model calculations it is predicted that I(HCN)/I(HNC) close to one should be obtained with higher angular resolution (less than or similar to 30 '') toward the cloud cores. Comparing virial masses with those obtained from the integrated CO intensity provides an H-2 mass-to-CO luminosity conversion factor of 1.8 x 10(20) mol cm(-2) (K km s(-1))(-1) for N113 and 2.4 x 10(20) mol cm(-2) (K km s(-1))(-1) for N44BC. This is consistent with values derived for the Galactic disk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first definite discoveries of extragalactic deuterium are reported. DCO+ has been detected in three and DCN has been measured in one star-forming region of the Large Magellanic Cloud (LMC). While the HCO+/DCO+ abundance ratios are found to be 19 +/- 3, 24 +/- 4, and 67 +/- 18 for N113, N44BC and N159HW, respectively, a HCN/DCN abundance ratio of 23 +/- 5 is obtained for N113. These results are consistent with a gas temperature of about 20 K and a D/H ratio of about 1.5 x 10(-5), consistent with that observed in the Galaxy. If the cloud temperature is closer to 30 K, then a D/H ratio is required to be up to an order of magnitude larger. Because this ratio provides a lower limit to the primordial D/H ratio, it indicates that the baryon mass density alone is unable to close the universe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We compare the predictions of evolutionary models for early-type stars with atmospheric parameters, projected rotational velocities and nitrogen abundances estimated for a sample of Be-type stars. Our targets are located in 4 fields centred on the Large Magellanic Cloud cluster: NGC 2004 and the N 11 region as well as the Small Magellanic Cloud clusters: NGC 330 and NGC 346.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have obtained the first high-resolution spectra of individual stars in the dwarf irregular galaxy NGC 6822. The spectra of the two A-type supergiants were obtained at the Very Large Telescope and Keck Observatories, using the Ultraviolet-Visual Echelle Spectrograph and the High Resolution Echelle Spectrometer, respectively. A detailed model atmospheres analysis has been used to determine their atmospheric parameters and elemental abundances. The mean iron abundance from these two stars is [[Fe/H]] = -0.49 +/- 0.22 (+/- 0.21),(6) with Cr yielding a similar underabundance, [[Cr/H]] = -0.50 +/- 0.20 (+/- 0.16). This confirms that NGC 6822 has a metallicity that is slightly higher than that of the SMC and is the first determination of the present-day iron group abundances in NGC 6822. The mean stellar oxygen abundance, 12 + log (O/H) = 8.36 +/- 0.19 (+/- 0.21), is in good agreement with the nebular oxygen results. Oxygen has the same underabundance as iron, [[O/ Fe]] = + 0.02 +/- 0.20 (+/- 0.21). This O/Fe ratio is very similar to that seen in the Magellanic Clouds, which supports the picture that chemical evolution occurs more slowly in these lower mass galaxies, although the O/Fe ratio is also consistent with that observed in comparatively metal-poor stars in the Galactic disk. Combining all of the available abundance observations for NGC 6822 shows that there is no trend in abundance with galactocentric distance. However, a subset of the highest quality data is consistent with a radial abundance gradient. More high-quality stellar and nebular observations are needed to confirm this intriguing possibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Model atmosphere analyses have been previously undertaken for both Galactic and extragalactic B-type supergiants. By contrast, little attention has been given to a comparison of the properties of single supergiants and those that are members of multiple systems. 

Aims: Atmospheric parameters and nitrogen abundances have been estimated for all the B-type supergiants identified in the VLT-FLAMES Tarantula survey. These include both single targets and binary candidates. The results have been analysed to investigate the role of binarity in the evolutionary history of supergiants. 

Methods: tlusty non-local thermodynamic equilibrium (LTE) model atmosphere calculations have been used to determine atmospheric parameters and nitrogen abundances for 34 single and 18 binary supergiants. Effective temperatures were deduced using the silicon balance technique, complemented by the helium ionisation in the hotter spectra. Surface gravities were estimated using Balmer line profiles and microturbulent velocities deduced using the silicon spectrum. Nitrogen abundances or upper limits were estimated from the Nii spectrum. The effects of a flux contribution from an unseen secondary were considered for the binary sample. Results. We present the first systematic study of the incidence of binarity for a sample of B-type supergiants across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the B-type supergiants it may be necessary to extend the TAMS to lower temperatures. This is also consistent with the derived distribution of mass discrepancies, projected rotational velocities and nitrogen abundances, provided that stars cooler than this temperature are post-red supergiant objects. For all the supergiants in the Tarantula and in a previous FLAMES survey, the majority have small projected rotational velocities. The distribution peaks at about 50 km s-1 with 65% in the range 30 km s-1 ≤ νe sin i ≤ 60 km s-1. About ten per cent have larger ve sin i (≥100 km s-1), but surprisingly these show little or no nitrogen enhancement. All the cooler supergiants have low projected rotational velocities of ≤70 km s-1 and high nitrogen abundance estimates, implying that either bi-stability braking or evolution on a blue loop may be important. Additionally, there is a lack of cooler binaries, possibly reflecting the small sample sizes. Single-star evolutionary models, which include rotation, can account for all of the nitrogen enhancement in both the single and binary samples. The detailed distribution of nitrogen abundances in the single and binary samples may be different, possibly reflecting differences in their evolutionary history. 

Conclusions: The first comparative study of single and binary B-type supergiants has revealed that the main sequence may be significantly wider than previously assumed, extending to Teff = 20 000 K. Some marginal differences in single and binary atmospheric parameters and abundances have been identified, possibly implying non-standard evolution for some of the sample. This sample as a whole has implications for several aspects of our understanding of the evolutionary status of blue supergiants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potential explanatory variables often co-vary in studies of species richness. Where topography varies within a survey it is difficult to separate area and habitat-diversity effects. Topographically complex surfaces may contain more species due to increased habitat diversity or as a result of increased area per se. Fractal geometry can be used to adjust species richness estimates to control for increases in area on complex surfaces. Application of fractal techniques to a survey of rocky shores demonstrated an unambiguous area-independent effect of topography on species richness in the Isle of Man. In contrast, variation in species richness in south-west England reflected surface availability alone. Multivariate tests and variation in limpet abundances also demonstrated regional variation in the area-independent effects of topography. Community composition did not vary with increasing surface complexity in south-west England. These results suggest large-scale gradients in the effects of heterogeneity on community processes or demography.