25 resultados para 787
Resumo:
Since the introduction of molecular computation1, 2, experimental molecular computational elements have grown3, 4, 5 to encompass small-scale integration6, arithmetic7 and games8, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size9 (about 1 nm) and large 'on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100 m) used for synthesis of combinatorial libraries10, 11. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a 'wash and watch' protocol12. Our focus on converting molecular science into technology concerning analog sensors13, 14, turns to digital logic devices in the present work.
Resumo:
Energy levels and oscillator strengths (transition probabilities) have been calculated for the fine-structure transitions among the levels of the (1s(2)) 2s(2)2p(2), 2s2p(3), 2p(4), 2s(2)2p3s, 2s(2)2p3p, and 2s(2)2p3d configurations of C-like F IV, Na VI, Al VIII, P X, Cl XII, and Ar XIII using the CIV3 program. The extensive configuration interaction and relativistic effects have been included while generating the wavefunctions. Calculated values of energy levels generally agree within 5% with the experimentally compiled results, and the length and velocity forms of oscillator strengths agree within 20% for a majority of allowed transitions.
Resumo:
This paper deals with Takagi-Sugeno (TS) fuzzy model identification of nonlinear systems using fuzzy clustering. In particular, an extended fuzzy Gustafson-Kessel (EGK) clustering algorithm, using robust competitive agglomeration (RCA), is developed for automatically constructing a TS fuzzy model from system input-output data. The EGK algorithm can automatically determine the 'optimal' number of clusters from the training data set. It is shown that the EGK approach is relatively insensitive to initialization and is less susceptible to local minima, a benefit derived from its agglomerate property. This issue is often overlooked in the current literature on nonlinear identification using conventional fuzzy clustering. Furthermore, the robust statistical concepts underlying the EGK algorithm help to alleviate the difficulty of cluster identification in the construction of a TS fuzzy model from noisy training data. A new hybrid identification strategy is then formulated, which combines the EGK algorithm with a locally weighted, least-squares method for the estimation of local sub-model parameters. The efficacy of this new approach is demonstrated through function approximation examples and also by application to the identification of an automatic voltage regulation (AVR) loop for a simulated 3 kVA laboratory micro-machine system.
Resumo:
Introduction: Refractory asthma represents a significant unmet clinical need where the evidence base for the assessment and therapeutic management is limited. The British Thoracic Society (BTS) Difficult Asthma Network has established an online National Registry to standardise specialist UK difficult asthma services and to facilitate research into the assessment and clinical management of difficult asthma.
Methods: Data from 382 well characterised patients, who fulfilled the American Thoracic Society definition for refractory asthma attending four specialist UK centres—Royal Brompton Hospital, London, Glenfield Hospital, Leicester, University Hospital of South Manchester and Belfast City Hospital—were used to compare patient demographics, disease characteristics and healthcare utilisation.
Results: Many demographic variables including gender, ethnicity and smoking prevalence were similar in UK centres and consistent with other published cohorts of refractory asthma. However, multiple demographic factors such as employment, family history, atopy prevalence, lung function, rates of hospital admission/unscheduled healthcare visits and medication usage were different from published data and significantly different between UK centres. General linear modelling with unscheduled healthcare visits, rescue oral steroids and hospital admissions as dependent variables all identified a significant association with clinical centre; different associations were identified when centre was not included as a factor.
Conclusion: Whilst there are similarities in UK patients with refractory asthma consistent with other comparable published cohorts, there are also differences, which may reflect different patient populations. These differences in important population characteristics were also identified within different UK specialist centres. Pooling multicentre data on subjects with refractory asthma may miss important differences and potentially confound attempts to phenotype this population.
Resumo:
Short interbirth interval has been associated with maternal complications and childhood autism and leukemia, possibly due to deficiencies in maternal micronutrients at conception or increased exposure to sibling infections. A possible association between interbirth interval and subsequent risk of childhood type 1 diabetes has not been investigated. A secondary analysis of 14 published observational studies of perinatal risk factors for type 1 diabetes was conducted. Risk estimates of diabetes by category of interbirth interval were calculated for each study. Random effects models were used to calculate pooled odds ratios (ORs) and investigate heterogeneity between studies. Overall, 2,787 children with type 1 diabetes were included. There was a reduction in the risk of childhood type 1 diabetes in children born to mothers after interbirth intervals <3 years compared with longer interbirth intervals (OR 0.82 [95% CI 0.72-0.93]). Adjustments for various potential confounders little altered this estimate. In conclusion, there was evidence of a 20% reduction in the risk of childhood diabetes in children born to mothers after interbirth intervals <3 years.
Resumo:
The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production. © 2012 Future Science Ltd.
Resumo:
The use of bit-level systolic array circuits as building blocks in the construction of larger word-level systolic systems is investigated. It is shown that the overall structure and detailed timing of such systems may be derived quite simply using the dependence graph and cut-set procedure developed by S. Y. Kung (1988). This provides an attractive and intuitive approach to the bit-level design of many VLSI signal processing components. The technique can be applied to ripple-through and partly pipelined circuits as well as fully systolic designs. It therefore provides a means of examining the relative tradeoff between levels of pipelining, chip area, power consumption, and throughput rate within a given VLSI design.