39 resultados para single crystal

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution of electron-phonon scattering and grain boundary scattering to the mid-IR (lambda = 3.392 mum) properties of An has been assessed by examining both bulk, single crystal samples-Au(1 1 1) and Au(1 1 0)-and thin film, polycrystalline An samples at 300 K and 100 K by means of surface plasmon polariton excitation. The investigation constitutes a stringent test for the in-vacuo Otto-configuration prism coupler used to perform the measurements, illustrating its strengths and limitations. Analysis of the optical response is guided by a physically based interpretation of the Drude model. Relative to the reference case of single crystal Au at 100 K (epsilon = - 568 + i17.5), raising the temperature to 300 K causes increased electron-phonon scattering that accounts for a reduction of similar to40 nm in the electron mean free path. Comparison of a polycrystalline sample to the reference case determines a mean free path due to grain boundary scattering of similar to 17 nm, corresponding to about half the mean grain size as determined from atomic force microscopy and indicating a high reflectance coefficient for the An grain boundaries. An analysis combining consideration of grain boundary scattering and the inclusion of a small percentage of voids in the polycrystalline film by means of an effective medium model indicates a value for the grain boundary reflection coefficient in the range 0.55-0.71. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focused ion beam microscope has been used to cut parallel-sided {100}-oriented thin lamellae of single crystal barium titanate with controlled thicknesses, ranging from 530 nm to 70 nm. Scanning transmission electron microscopy has been used to examine domain configurations. In all cases, stripe domains were observed with {011}-type domain walls in perovskite unit-cell axes, suggesting 90 degrees domains with polarization in the plane of the lamellae. The domain widths were found to vary as the square root of the lamellar thickness, consistent with Kittel's law, and its later development by Mitsui and Furuichi and by Roytburd. An investigation into the manner in which domain period adapts to thickness gradient was undertaken on both wedge-shaped lamellae and lamellae with discrete terraces. It was found that when the thickness gradient was perpendicular to the domain walls, a continuous change in domain periodicity occurred, but if the thickness gradient was parallel to the domain walls, periodicity changes were accommodated through discrete domain bifurcation. Data were then compared with other work in literature, on both ferroelectric and ferromagnetic systems, from which conclusions on the widespread applicability of Kittel's law in ferroics were made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin lamellae were cut from bulk single crystal BaTiO3 using a Focused Ion Beam Microscope. They were then removed and transferred onto single crystal MgO substrates, so that their functional properties could be measured independent of the original host bulk ferroelectric. The temperature dependence of the capacitance of these isolated single crystal films was found to be strongly bulk-like, demonstrating a sharp Curie anomaly, as well as Curie-Weiss behaviour. In addition, the sudden change in the remanent polarisation as a function of temperature at TC was characteristic of a first order phase change. The work represents a dramatic improvement on that previously published by M. M. Saad, P. Baxter, R. M. Bowman, J. M. Gregg, F. D. Morrison & J. F. Scott, J. Phys: Cond. Matt., 16 L451-L456 (2004), as critical shortcomings in the original specimen geometry, involving potential signal contributions from bulk BaTiO3, have now been obviated. That the functional properties of single crystal thin film lamellae are comparable to bulk, and not like those of conventionally deposited heteroegenous thin film systems, has therefore been confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of the unusual 90 degrees ferroelectric/ferroelastic domains, consistently observed in recent studies on mesoscale and nanoscale free-standing single crystals of BaTiO3 [Schilling , Phys. Rev. B 74, 024115 (2006); Schilling , Nano Lett. 7, 3787 (2007)], has been considered. A model has been developed which postulates that the domains form as a response to elastic stress induced by a surface layer which does not undergo the paraelectric-ferroelectric cubic-tetragonal phase transition. This model was found to accurately account for the changes in domain periodicity as a function of size that had been observed experimentally. The physical origin of the surface layer might readily be associated with patterning damage, seen in experiment; however, when all evidence of physical damage is removed from the BaTiO3 surfaces by thermal annealing, the domain configuration remains practically unchanged. This suggests a more intrinsic origin, such as the increased importance of surface tension at small dimensions. The effect of surface tension is also shown to be proportional to the difference in hardness between the surface and the interior of the ferroelectric. The present model for surface-tension induced twinning should also be relevant for finely grained or core-shell structured ceramics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article compares and contrasts information
obtained, using transmission electron microscopy (TEM)
and piezo-force microscopy (PFM), on domain configurations
adopted in single crystal lamellae of BaTiO3, that had
been cut directly from bulk using a focused ion beam
microscope with top and bottom surfaces parallel to
{100}pseudocubic. Both forms of imaging reveal domain
walls parallel to {110}pseudocubic, consistent with sets of 90
domains with dipoles oriented parallel to the two
\001[pseudocubic directions in the plane of the lamellae.
However, the domain width was observed to be dramatically
larger using PFM than it was using TEM. This suggests
significant differences in the surface energy densities
that drive the domain formation in the first place, that could
relate to differences in the boundary conditions in the two
modes of imaging (TEM samples are imaged under high
vacuum, whereas PFM imaging was performed in air).
Attempts were made to map local dipole orientations
directly, using a form of ‘vector’ PFM. However, information
inferred was largely inconsistent with the known
crystallography of the samples, raising concern about the
levels of care needed for accurate interpretation of PFM
images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this article shows the power of the variable temperature, in-situ FT-IR spectroscopy system developed in Newcastle with respect to the investigation of fuel cell electro-catalysis. On the Ru(0001) electrode surface, CO co-adsorbs with the oxygen-containing adlayers to form mixed [CO+(2x2)-O(H)] domains. The electro-oxidation of the Ru(0001) surface leads to the formation of active (1x1)-O(H) domains, and the oxidation of adsorbed CO then takes place at the perimeter of these domains. At 20 degrees C, the adsorbed CO is present as rather compact islands. In contrast, at 60 degrees C, the COads is present as a relatively looser and weaker adlayer. Higher temperature was also found to facilitate the surface diffusion and oxidation of COads. No dissociation or electro-oxidation of methanol was observed at potentials below approximately 950mV; however, the Ru(0001) surface at high anodic potentials was observed to be very active. On both Pt and PtRu nanoparticle surfaces, only one linear bond CO adsorbate was formed from methanol adsorption, and the PtRu surface significantly promoted both methanol dissociative adsorption to CO and its further oxidation to CO2. Increasing temperature from 20 to 60 degrees C significantly facilitates the methanol turnover to CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in domain wall mobility, caused by the presence of antinotches in single crystal BaTiO3 nanowires, have been investigated. While antinotches appeared to cause a slight broadening in the distribution of switching events, observed as a function of applied electric field (inferred from capacitance-voltage measurements), the effect was often subtle. Greater clarity of information was obtained from Rayleigh analysis of the capacitance variation with ac field amplitude. Here the magnitude of the domain wall mobility parameter (R) associated with irreversible wall movements was found to be reduced by the presence of antinotches - an effect which became more noticeable on heating toward the Curie temperature. The reduction in this domain wall mobility was contrasted with the noticeable enhancement found previously in ferroelectric wires with notches. Finite element modeling of the electric field, developed in the nanowires during switching, revealed regions of increased and decreased local field at the center of the notch and antinotch structures, respectively; the absolute magnitude of field enhancement in the notch centers was considerably greater than the field reduction in the center of the antinotches and this was commensurate with the manner in, and degree to, which domain wall mobility appeared to be affected. We therefore conclude that the main mechanism by which morphology alters the irreversible component of the domain wall mobility in ferroelectric wire structures is via the manner in which morphological variations alter the spatial distribution of the electric field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naturally occurring boundaries between bundles of 90o stripe domains, which form in BaTiO3 lamellae on cooling through the Curie Temperature, have been characterised using both piezoresponse force microscopy (PFM) and scanning transmission electron microscopy (STEM). Detailed interpretation of the dipole configurations present at these boundaries (using data taken from PFM) shows that, in the vast majority of cases, they are composed of simple zigzag 180° domain walls. Topological information from STEM shows that, occasionally, domain bundle boundaries can support chains of dipole flux closure and quadrupole nanostructures, but these kinds of boundaries are comparatively rare; when such chains do exist, it is notable that singularities at the cores of the dipole structures are avoided. The symmetry of the boundary shows that diads and centres of inversion exist at positions where core singularities should have been expected.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over 60 years ago, Charles Kittel predicted that quadrant domains should spontaneously form in small ferromagnetic platelets. He expected that the direction of magnetization within each quadrant should lie parallel to the platelet surface, minimizing demagnetizing fields, and that magnetic moments should be configured into an overall closed loop, or flux-closure arrangement. Although now a ubiquitous observation in ferromagnets, obvious flux-closure patterns have been somewhat elusive in ferroelectric materials. This is despite the analogous behaviour between these two ferroic subgroups and the recent prediction of dipole closure states by atomistic simulations research. Here we show Piezoresponse Force Microscopy images of mesoscopic dipole closure patterns in free-standing, single-crystal lamellae of BaTiO3. Formation of these patterns is a dynamical process resulting from system relaxation after the BaTiO3 has been poled with a uniform electric field. The flux-closure states are composed of shape conserving 90° stripe domains which minimize disclination stresses.