22 resultados para anti-HIV activities

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biophysical and biological properties of unprecedented anti-HIV aptamers are presented. The most active aptamer (1L) shows a significant affinity to the HIV protein gp120.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This communication reports on the synthesis and biophysical, biological and SAR studies of a small library of new anti-HIV aptamers based on the tetra-end-linked G-quadruplex structure. The new aptamers showed EC(50) values against HIV-1 in the range of 0.04-0.15 µM as well as affinities for the HIV-1 gp120 envelope in the same order of magnitude

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The significantly higher surface expression of the surface heat-shock protein receptor CD91 on monocytes of human immunodeficiency virus type-1 (HIV-1)-infected, long-term nonprogressors suggests that HIV-1 antigen uptake and cross-presentation mediated by CD91 may contribute to host anti-HIV-1 defenses and play a role in protection against HIV-1 infection. To investigate this further, we performed phenotypic analysis to compare CD91 surface expression on CD14+ monocytes derived from a cohort of HIV-1-exposed seronegative (ESN) subjects, their seropositive (SP) partners, and healthy HIV-1-unexposed seronegative (USN) subjects. The median fluorescent intensity (MFI) of CD91 on CD14+ monocytes was significantly higher in ESN compared with SP (P=0.028) or USN (P=0.007), as well as in SP compared with USN subjects (P=0.018). CD91 MFI was not normalized in SP subjects on highly active antiretroviral therapy (HAART) despite sustainable, undetectable plasma viraemia. Data in three SP subjects experiencing viral rebounds following interruption of HAART showed low CD91 MFI comparable with levels in USN subjects. There was a significant positive correlation between CD91 MFI and CD8+ T cell counts in HAART-naïve SP subjects (r=0.7, P=0.015). Increased surface expression of CD91 on CD14+ monocytes is associated with the apparent HIV-1 resistance that is observed in ESN subjects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: There is considerable interest in developing new multipurpose prevention technologies to address women's reproductive health needs. This study describes an innovative barrier contraceptive device--based on the SILCS diaphragm--that also provides long-term controlled release of the lead candidate anti-HIV microbicide dapivirine.

Study design: Diaphragm devices comprising various dapivirine-loaded polymer spring cores overmolded with a nonmedicated silicone elastomer sheath were fabricated by injection molding processes. In vitro release testing, thermal analysis and mechanical characterization were performed on the devices.

Results: A diaphragm device containing a polyoxymethylene spring core loaded with 10% w/w dapivirine provided continuous and controlled release of dapivirine over a 6-month period, with a mean in vitro daily release rate of 174 mcg/day. The mechanical properties of the new diaphragm were closely matched to the SILCS diaphragm.

Conclusions: The study demonstrates proof of concept for a dapivirine-releasing diaphragm with daily release quantities potentially capable of preventing HIV transmission. In discontinuous clinical use, release of dapivirine may be readily extended over 1 or more years. © 2013 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose of review: The aim of this article is to summarize the latest information on microbicide formulations for prevention of sexual transmission of HIV infection in women. Recent findings: Although early microbicide formulations were conventionally coitally dependent gel products, new technologies are being developed for vaginal delivery of anti-HIV agents. Intravaginal rings for delivery of microbicides, for example, are being developed and evaluated clinically. Safety and acceptability data are available for many microbicide gels and for one microbicide intravaginal ring. Other microbicide formulations in development for once daily or other vaginal administration strategies include films, tablets, and ovules. Various microbicide formulations for rectal administration are also in development. Summary: New microbicide formulations in development are addressing many of the issues with the original gels such as coital dependency, frequency of use, acceptability, compliance, cost, and adaptability to large-scale production. All of these dosage forms are promising options for safe, effective, and acceptable microbicide products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The carbazole moiety is a component of many important pharmaceuticals including anticancer and anti-HIV agents and is commonly utilized in the production of modern polymeric materials with novel photophysical and electronic properties. Simple carbazoles are generally produced via the aromatization of the respective tetrahydrocarbazole (THCZ). In this work, density functional theory calculations are used to model the reaction pathway of tetrahydrocarbazole aromatization over Pd(111). The geometry of each of the intermediate surface species has been determined and how each structure interacts with the metal surface addressed. The reaction energies and barriers of each of the elementary surface reactions have also been calculated, and a detailed analysis of the energetic trends performed. Our calculations have shown that the surface intermediates remain fixed to the surface via the aromatic ring in a manner similar to that of THCZ. Moreover, the aliphatic ring becomes progressively more planer with the dissociation of each subsequent hydrogen atom. Analysis of the reaction energy profile has revealed that the trend in reaction barriers is determined by the two factors: (i) the strength of the dissociating ring-H bond and (ii) the subsequent gain in energy due to the geometric relaxation of the aliphatic ring. (c) 2008 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

HIV1 integrase is an important target for the antiviral therapy. Guanine-rich quadruplex, such as 93del, have been shown to be potent inhibitors of this enzyme and thus representing a new class of antiviral agents. Although X-ray and NMR structures of HIV1 integrase and 93del have been reported, there is no structural information of the complex and the mechanism of inhibition still remains unexplored. A number of computational methods including automated protein-DNA docking and molecular dynamics simulation in explicit solvent were used to model the binding of 93del to HIV1 integrase. Analysis of the dynamic behaviour of the complex using principal components analysis and elastic network modelling techniques allow us to understand how the binding of 93del aptamer and its interactions with key residues affect the intrinsic motions of the catalytic loops by stabilising them in catalytically inactive conformations. Such insights into the structural mechanism of inhibition can aid in improving the design of anti-HIV aptamers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wound healing, angiogenesis and hair follicle maintenance are often impaired in the skin of diabetic patients, but the pathogenesis has not been well understood. Here, we report that circulation levels of kallistatin, a member of the serine proteinase inhibitor (SERPIN) superfamily with anti-angiogenic activities, were elevated in Type 2 diabetic patients with diabetic vascular complications. To test the hypothesis that elevated kallistatin levels could contribute to a wound healing deficiency via inhibition of Wnt/β-catenin signaling, we generated kallistatin-transgenic (KS-TG) mice. KS-TG mice had reduced cutaneous hair follicle density, microvascular density, and panniculus adiposus layer thickness as well as altered skin microvascular hemodynamics and delayed cutaneous wound healing. Using Wnt reporter mice, our results showed that Wnt/β-catenin signaling is suppressed in dermal endothelium and hair follicles in KS-TG mice. Lithium, a known activator of β-catenin via inhibition of glycogen synthase kinase-3β, reversed the inhibition of Wnt/β-catenin signaling by kallistatin and rescued the wound healing deficiency in KS-TG mice. These observations suggest that elevated circulating anti-angiogenic serpins in diabetic patients may contribute to impaired wound healing through inhibition of Wnt/β-catenin signaling. Activation of Wnt/β-catenin signaling, at a level downstream of Wnt receptors, may ameliorate the wound healing deficiency in diabetic patients.Journal of Investigative Dermatology accepted article preview online, 24 January 2014. doi:10.1038/jid.2014.40.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Application of non-drug-loaded poly(ethylcyanoacrylate) nanoparticles (NP) to buccal epithelial cells (BEC) imparted both anti-adherent and antifungal effects. NP prepared using emulsion polymerisation and stabilised using cationic, anionic and non-ionic surfactants decreased Candida albicans blastospore adhesion, an effect attributable to the peripheral coating of surfactant. Cetrimide and Pluronic (R) P 123 were shown to be most effective, producing mean percentage reductions in blastospore adherence of 52.7 and 37.0, respectively. Resultant zeta potential matched the polarity of the surfactant, with those stabilised using cetrimide being especially positive (+31.3 mV). Preparation using anionic surfactants was shown to be problematic, with low yield and wide particle size distribution. Evaluation of the antifungal effect of the peripheral coat was evaluated using zones of inhibition and viable counts assays. The former test revealed poor surfactant diffusion through agar, but did show evidence of limited kill. However, the latter method showed that cationic surfactants associated with NP produced high levels of kill, in contrast to those coated with anionic surfactants, where kill was not evident. Non-ionic surfactant-coated NP produced intermediate kill rates. Results demonstrate that surfactant-coated NP, particularly the cationic types, form the possible basis of a prophylactic formulation that primes the candidal target (BEC) against fungal adhesion and infection. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.