45 resultados para Volatil fatty acid

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented here is aimed at determining the potential and limitations of Raman spectroscopy for fat analysis by carrying out a systematic investigation of C-4-C-24 FAME. These provide a simple, well-characterized set of compounds in which the effect of making incremental changes can be studied over a wide range of chain lengths and degrees of unsaturation. The effect of temperature on the spectra was investigated over much larger ranges than would normally be encountered in real analytical measurements. It was found that for liquid FAME the best internal standard band was the carbonyl stretching vibration nu(C = O), whose position is affected by changes in sample chain length and physical state; in the samples studied here, it was found to lie between 1729 and 1748 cm(-1). Further, molar unsaturation could be correlated with the ratio of the nu(C = O) to either nu(C = C) or delta(H-C = ) with R-2 > 0.995. Chain length was correlated with the delta(CH2)(tw)/nu(C = O) ratio, (where "tw" indicates twisting) but separate plots for odd- and even-numbered carbon chains were necessary to obtain R-2 > 0.99 for liquid samples. Combining the odd- ani even-numbered carbon chain data in a single plot reduced the correlation to R-2 = 0.94-0.96, depending on the band ratios used. For molal unsaturation the band ratio that correlated linearly with unsaturation (R-2 > 0.99) was nu(C = C)/delta(CH2)(SC) (where "sc" indicates scissoring). Other band ratios show much more complex behavior with changes in chemical and physical structure. This complex behavior results from the fact that the bands do not arise from simple vibrations of small, discrete regions of the molecules but are due to complex motions of large sections of the FAME so that making incremental changes in structure does not necessarily lead to simple incremental changes in spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional calculations, using B3LPY/6-31G(d) methods, have been used to investigate the conformations and vibrational (Raman) spectra of three short-chain fatty acid methyl esters (FAMEs) with the formula CnH2nO2 (n = 3-5). In all three FAMEs, the lowest energy conformer has a simple 'all-trans' structure but there are other conformers, with different torsions about the backbone, which lie reasonably close in energy to the global minimum. One result of this is that the solid samples we studied do not appear to consist entirely of the lowest energy conformer. Indeed, to account for the 'extra' bands that were observed in the Raman data but were not predicted for the all-trans conformer, it was necessary to add-in contributions from other conformers before a complete set of vibrational assignments could be made. Provided this was done, the agreement between experimental Raman frequencies and 6-31G(d) values (after scaling) was excellent, RSD = 12.6 cm(-1). However, the agreement between predicted and observed intensities was much less satisfactory. To confirm the validity of the approach followed by the 6-3 1 G(d) basis set, we used a larger basis set, Sadlej pVTZ, and found that these calculations gave accurate Raman intensities and simulated spectra (summed from two different conformers) that were in quantitative agreement with experiment. In addition, the unscaled Sadlej pVTZ, and the scaled 6-3 1 G(d) calculations gave the same vibrational mode assignments for all bands in the experimental data. This work provides the foundation for calculations on longer-chain FAMEs (which are closer to those found as triglycerides in edible fats and oils) because it shows that scaled 6-3 1 G(d) calculations give equally accurate frequency predictions, and the same vibrational mode assignments, as the much more CPU-expensive Sadlej pVTZ basis set calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous research suggests that the digital cushion, a shock-absorbing structure in the claw, plays an important role in protecting cattle from lameness. This study aimed to assess the degree to which nutritional factors influence the composition of the digital cushion. This involved quantifying lipid content and fatty acid composition differences in digital cushion tissue from cattle offered diets with different amounts of linseed. Forty-six bulls were allocated to 1 of 4 treatments, which were applied for an average of 140 +/- 27 d during the finishing period. The treatments consisted of a linseed supplement offered once daily on top of the basal diet (grass silage:concentrate) at 0, 400, 800, or 1,200 g of supplement/animal per day. For each treatment, the concentrate offered was adjusted to ensure that total estimated ME intake was constant across treatments. Target BW at slaughter was 540 kg. Legs were collected in 3 batches after 120, 147 and 185 d on experiment. Six samples of the digital cushion were dissected from the right lateral hind claw of each animal. Lipids were extracted and expressed as a proportion of fresh tissue, and fatty acid composition of the digital cushion was determined by gas chromatography. Data were analyzed by ANOVA, with diet, location within the digital cushion, and their interactions as fixed effects and fat content (grams per 100 g of tissue) as a covariate. Linear or quadratic contrasts were examined. The lipid content of digital cushion tissue differed between sampling locations (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The G-protein-coupled receptor free fatty acid receptor 1 (FFAR1), previously named GPR40, is a possible novel target for the treatment of type 2 diabetes. In an attempt to identify new ligands for this receptor, we performed virtual screening (VS) based on two-dimensional (2D) similarity, three-dimensional (3D) pharmacophore searches, and docking studies by using the structure of known agonists and our model of the ligand binding site, which was validated by mutagenesis. VS of a database of 2.6 million compounds followed by extraction of structural neighbors of functionally confirmed hits resulted in identification of 15 compounds active at FFAR1 either as full agonists, partial agonists, or pure antagonists. Site-directed mutagenesis and docking studies revealed different patterns of ligand-receptor interactions and provided important information on the role of specific amino acids in binding and activation of FFAR1.