13 resultados para Synthetic Traffic Generation
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their non-deterministic performance. Although CAMs are favoured by technology vendors due to their deterministic high lookup rates, they suffer from the problems of high power dissipation and high silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multi-level cutting the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.
Resumo:
Second-generation carnosine analogs bearing the histidyl-hydrazide moiety have been synthesized and tested for their efficiency in scavenging malondialdehyde (MDA) derived from lipid peroxidation and for their ability to reverse the glycation process in the glucose-ethylamine Schiff base model. The data obtained indicate that this class of compounds maintains the activity profile of carnosine and is a suitable candidate for the treatment of disorders caused by oxidative stress.
Resumo:
A key issue in the design of next generation Internet routers and switches will be provision of traffic manager (TM) functionality in the datapaths of their high speed switching fabrics. A new architecture that allows dynamic deployment of different TM functions is presented. By considering the processing requirements of operations such as policing and congestion, queuing, shaping and scheduling, a solution has been derived that is scalable with a consistent programmable interface. Programmability is achieved using a function computation unit which determines the action (e.g. drop, queue, remark, forward) based on the packet attribute information and a memory storage part. Results of a Xilinx Virtex-5 FPGA reference design are presented.
Resumo:
The production of complex inorganic forms, based on naturally occurring scaffolds offers an exciting avenue for the construction of a new generation of ceramic-based bone substitute scaffolds. The following study reports an investigation into the architecture (porosity, pore size distribution, pore interconnectivity and permeability), mechanical properties and cytotoxic response of hydroxyapatite bone substitutes produced using synthetic polymer foam and natural marine sponge performs. Infiltration of polyurethane foam (60 pores/in2) using a high solid content (80wt %), low viscosity (0.126Pas) hydroxyapatite slurry yielded 84-91% porous replica scaffolds with pore sizes ranging from 50µm - 1000µm (average pore size 577µm), 99.99% pore interconnectivity and a permeability value of 46.4 x10-10m2. Infiltration of the natural marine sponge, Spongia agaricina, yielded scaffolds with 56- 61% porosity, with 40% of pores between 0-50µm, 60% of pores between 50-500µm (average pore size 349 µm), 99.9% pore interconnectivity and a permeability value of 16.8 x10-10m2. The average compressive strengths and compressive moduli of the natural polymer foam and marine sponge replicas were 2.46±1.43MPa/0.099±0.014GPa and 8.4±0.83MPa /0.16±0.016GPa respectively. Cytotoxic response proved encouraging for the HA Spongia agaricina scaffolds; after 7 days in culture medium the scaffolds exhibited endothelial cells (HUVEC and HDMEC) and osteoblast (MG63) attachment, proliferation on the scaffold surface and penetration into the pores. It is proposed that the use of Spongia agaricina as a precursor material allows for the reliable and repeatable production of ceramic-based 3-D tissue engineered scaffolds exhibiting the desired architectural and mechanical characteristics for use as a bone 3 scaffold material. Moreover, the Spongia agaricina scaffolds produced exhibit no adverse cytotoxic response.
Resumo:
This paper presents a lookup circuit with advanced memory techniques and algorithms that examines network packet headers at high throughput rates. Hardware solutions and test scenarios are introduced to evaluate the proposed approach. The experimental results show that the proposed lookup circuit is able to achieve at least 39 million packet header lookups per second, which facilitates the application of next-generation stateful packet classifications at beyond 20Gbps internet traffic throughput rates.
Resumo:
Particle-in-cell (PIC) simulations of relativistic shocks are in principle capable of predicting the spectra of photons that are radiated incoherently by the accelerated particles. The most direct method evaluates the spectrum using the fields given by the Lienard-Wiechart potentials. However, for relativistic particles this procedure is computationally expensive. Here we present an alternative method that uses the concept of the photon formation length. The algorithm is suitable for evaluating spectra both from particles moving in a specific realization of a turbulent electromagnetic field or from trajectories given as a finite, discrete time series by a PIC simulation. The main advantage of the method is that it identifies the intrinsic spectral features and filters out those that are artifacts of the limited time resolution and finite duration of input trajectories.
Resumo:
Policy-based management is considered an effective approach to address the challenges of resource management in large complex networks. Within the IU-ATC QoS Frameworks project, a policy-based network management framework, CNQF (Converged Networks QoS Framework) is being developed aimed at providing context-aware, end-to-end QoS control and resource management in converged next generation networks. CNQF is designed to provide homogeneous, transparent QoS control over heterogeneous access technologies by means of distributed functional entities that co-ordinate the resources of the transport network through policy-driven decisions. In this paper, we present a measurement-based evaluation of policy-driven QoS management based on CNQF architecture, with real traffic flows on an experimental testbed. A Java based implementation of the CNQF Resource Management Subsystem is deployed on the testbed and results of the experiments validate the framework operation for policy-based QoS management of real traffic flows.
Resumo:
There have been over 3000 bridge weigh-in-motion (B-WIM) installations in 25 countries worldwide, this has led vast improvements in post processing of B-WIM systems since its introduction in the 1970’s. Existing systems are based on electrical resistance strain gauges which can be prohibitive in achieving data for long term monitoring of rural bridges due to power consumption. This paper introduces a new low-power B-WIM system using fibre optic sensors (FOS). The system consisted of a series of FOS which were attached to the soffit of an existing integral bridge with a single span of 19m. The site selection criteria and full installation process has been detailed in the paper. A method of calibration was adopted using live traffic at the bridge site and based on this calibration the accuracy of the system was determined. New methods of axle detection for B-WIM were investigated and verified in the field.
Resumo:
PatchCity is a new approach to the procedural generation of city models. The algorithm uses texture synthesis to create a city layout in the visual style of one or more input examples. Data is provided in vector graphic form from either real or synthetic city definitions. The paper describes the PatchCity algorithm, illustrates its use, and identifies its strengths and limitations. The technique provides a greater range of features and styles of city layout than existing generative methods, thereby achieving results that are more realistic. An open source implementation of the algorithm is available.
Resumo:
Densely deployed WiFi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in WiFi networks and throughput efficiency degradation, densely deployed WiFi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to efficiently utilize scarce spectrum resources, by matching physical layer resources to traffic demand. In this aspect, access control allocation strategies play a pivotal role but remain too coarse-grained. As a solution, this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in WiFi networks. This approach, named SFCA (Sub-carrier Fine-grained Channel Access), adopts DOFDM (Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer. It allocates the frequency resource with a sub-carrier granularity, which facilitates the channel width adaptation for multi-channel access and thus brings more flexibility and higher frequency efficiency. The MAC layer uses a frequency-time domain backoff scheme, which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision, resulting in higher access probability for the contending nodes. SFCA is compared with FICA (an established access scheme) showing significant outperformance. Finally we present results for next generation 802.11ac WiFi networks.