49 resultados para SCANNING ELECTRON MICROSCOPY
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper follows previous X-ray diffraction work on crystallisation and phase transformation of electroless nickel–phosphorus deposits, concentrating on microstructural changes. Amorphous or nanocrystalline coatings, depending on their phosphorus content, were heat treated at temperatures between 100 and 500 °C for 1 h. Changes in microstructure after the heat treatment were examined using high-resolution field emission scanning electron microscope. Crystallisation and grain growth effects are observed, as well as some inherent defect structures in the coatings and their changes. These are compared with the previous X-ray diffraction work and in general, good agreement is observed. The complementary strength and weakness of the different characterisation techniques are discussed.
Resumo:
This paper reports image analysis methods that have been developed to study the microstructural changes of non-wovens made by the hydroentanglement process. The validity of the image processing techniques has been ascertained by applying them to test images with known properties. The parameters in preprocessing of the scanning electron microscope (SEM) images used in image processing have been tested and optimized. The fibre orientation distribution is estimated using fast Fourier transform (FFT) and Hough transform (HT) methods. The results obtained using these two methods are in good agreement. The HT method is more demanding in computational time compared with the Fourier transform (FT) method. However, the advantage of the HT method is that the actual orientation of the lines can be concluded directly from the result of the transform without the need for any further computation. The distribution of the length of the straight fibre segments of the fabrics is evaluated by the HT method. The effect of curl of the fibres on the result of this evaluation is shown.
Resumo:
The image analysis techniques developed in Part 1 to study microstructural changes in non-woven fabrics are applied to measure the fibre orientation distribution and fibre length distribution of hydroentangled fabrics. The results are supported by strength and modulus measurements using samples from the same fabrics. It is shown that the techniques developed can successfully be used to assess the degree of entanglement of hydroentangled fabrics regardless of their thickness.
Resumo:
Gold is the optimal tip metal for light emission in scanning tunnelling microscopy (LESTM) under ambient conditions. Sharp Au-tips of similar to 10nm radius were produced reliably using a safe, two-step etching method in 20% (w/w) CaCl2 solution. Previous CaCl2-based methods have tended to produce blunter tips, while other etching techniques that do produce sharp Au-tips, do so with the use of toxic or hazardous electrolytes. The tips are characterised using scanning electron microscopy and their efficacy in LESTM is evidenced by high-resolution, simultaneous topographic and photon mapping of Au(1 1 1)- and polycrystalline Au-surfaces. Spectra of the optical emission exhibit only one or two peaks with etched tips in contrast to the more complex spectra typical of cut tips; this feature, together with the highly symmetric geometry of the tips, facilitates a definitive analysis of the light emission process. (c) 2007 Elsevier B. V.. All rights reserved.
Resumo:
Surface-enhanced Raman scattering (SERS) excited at several visible wavelengths and recorded using a cooled charged-coupled device detector is reported from the mobile, interfacial, liquid-like metal films (MELLFs) formed when solutions of metal complexes or pyridine in chlorocarbon solvents are mixed with aqueous sols of silver or gold. MELLF formation has not previously been reported for gold sols or for pyridine as stabilizer. Comparison of the spectra for the MELLFs formed from individual metal complexes and from 50:50 mixtures show that the spectral patterns observed for the latter are distinctive and are not generally equivalent to the sum of the spectra associated with the individual complexes, in contrast to the situation observed for sols where the individual spectra do appear to be additive. Raman scattering from both gold and silver MELLFs is readily observed at excitation wavelengths in the red, around 750 nm, but at 514 nm only that from silver films is detectable. These findings are considered in terms of particle size and absorption band intensities. A preliminary study of the film surface topography and particle size was carried out by scanning tunnelling electron microscopy (STM) of Ag MELLFs deposited on gold-coated mica substrates. Computer-processed images of the STM data show the presence on the film surface of finger-like bars, 200-400 nm long with approximately square cross-section, 40-60 nm side, together with other smaller cuboid features. The implications of these findings in relation to SERS are briefly considered.
Resumo:
(1x1) and (2x1) reconstructions of the (001) SrTiO3 surface were studied using the first-principles full-potential linear muffin-tin orbital method. Surface energies were calculated as a function of TiO2 chemical potential, oxygen partial pressure and temperature. The (1x1) unreconstructed surfaces were found to be energetically stable for many of the conditions considered. Under conditions of very low oxygen partial pressure the (2x1) Ti2O3 reconstruction [Martin R. Castell, Surf. Sci. 505, 1 (2002)] is stable. The question as to why STM images of the (1x1) surfaces have not been obtained was addressed by calculating charge densities for each surface. These suggest that the (2x1) reconstructions would be easier to image than the (1x1) surfaces. The possibility that the presence of oxygen vacancies would destabilise the (1x1) surfaces was also investigated. If the (1x1) surfaces are unstable then there exists the further possibility that the (2x1) DL-TiO2 reconstruction [Natasha Erdman Nature (London) 419, 55 (2002)] is stable in a TiO2-rich environment and for p(O2)>10(-18) atm.
Resumo:
The propagation of surface plasmon polaritons (SPP's) is studied using a photon scanning tunneling microscope (PSTM) and conventional attenuated total reflection (ATR). The PSTM experiment uses localized (focused beam) launching or SPP's at a wavelength of 632.8 nm. Propagation of the SPP is observed as an exponentially decaying tail beyond the launch site acid the 1/e propagation length is measured directly for a series of Ag films of different thicknesses. The ATR measurements are used to characterize the thin film optical and thickness parameters, revealing, notably, the presence of a contaminating adlayer of Ag2S of typical dielectric function, 8.7 + i2.7, and thickness 1-2 nm. Values of the SPP propagation length, based on the ATR- derived film parameters used in the four-media implicit SPP dispersion relation, show very good agreement with those based on the PSTM images for the case of undercoupled or optimally coupled SPP modes. The observed propagation lengths are quantitatively analyzed taking explicit account of additional intrinsic damping due to the growth of the Ag2S layer and of reradiation of the SPP back into the prism outside the launch site. Finally, the PSTM images show excellent SPP beam confinement in the original propagation direction.