71 resultados para Reproducing Kernel

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many modeling problems require to estimate a scalar output from one or more time series. Such problems are usually tackled by extracting a fixed number of features from the time series (like their statistical moments), with a consequent loss in information that leads to suboptimal predictive models. Moreover, feature extraction techniques usually make assumptions that are not met by real world settings (e.g. uniformly sampled time series of constant length), and fail to deliver a thorough methodology to deal with noisy data. In this paper a methodology based on functional learning is proposed to overcome the aforementioned problems; the proposed Supervised Aggregative Feature Extraction (SAFE) approach allows to derive continuous, smooth estimates of time series data (yielding aggregate local information), while simultaneously estimating a continuous shape function yielding optimal predictions. The SAFE paradigm enjoys several properties like closed form solution, incorporation of first and second order derivative information into the regressor matrix, interpretability of the generated functional predictor and the possibility to exploit Reproducing Kernel Hilbert Spaces setting to yield nonlinear predictive models. Simulation studies are provided to highlight the strengths of the new methodology w.r.t. standard unsupervised feature selection approaches. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many applications, and especially those where batch processes are involved, a target scalar output of interest is often dependent on one or more time series of data. With the exponential growth in data logging in modern industries such time series are increasingly available for statistical modeling in soft sensing applications. In order to exploit time series data for predictive modelling, it is necessary to summarise the information they contain as a set of features to use as model regressors. Typically this is done in an unsupervised fashion using simple techniques such as computing statistical moments, principal components or wavelet decompositions, often leading to significant information loss and hence suboptimal predictive models. In this paper, a functional learning paradigm is exploited in a supervised fashion to derive continuous, smooth estimates of time series data (yielding aggregated local information), while simultaneously estimating a continuous shape function yielding optimal predictions. The proposed Supervised Aggregative Feature Extraction (SAFE) methodology can be extended to support nonlinear predictive models by embedding the functional learning framework in a Reproducing Kernel Hilbert Spaces setting. SAFE has a number of attractive features including closed form solution and the ability to explicitly incorporate first and second order derivative information. Using simulation studies and a practical semiconductor manufacturing case study we highlight the strengths of the new methodology with respect to standard unsupervised feature extraction approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the monitoring of complex nonlinear and time-varying processes. Kernel principal component analysis (KPCA) has gained significant attention as a monitoring tool for nonlinear systems in recent years but relies on a fixed model that cannot be employed for time-varying systems. The contribution of this article is the development of a numerically efficient and memory saving moving window KPCA (MWKPCA) monitoring approach. The proposed technique incorporates an up- and downdating procedure to adapt (i) the data mean and covariance matrix in the feature space and (ii) approximates the eigenvalues and eigenvectors of the Gram matrix. The article shows that the proposed MWKPCA algorithm has a computation complexity of O(N2), whilst batch techniques, e.g. the Lanczos method, are of O(N3). Including the adaptation of the number of retained components and an l-step ahead application of the MWKPCA monitoring model, the paper finally demonstrates the utility of the proposed technique using a simulated nonlinear time-varying system and recorded data from an industrial distillation column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Massively parallel networks of highly efficient, high performance Single Instruction Multiple Data (SIMD) processors have been shown to enable FPGA-based implementation of real-time signal processing applications with performance and
cost comparable to dedicated hardware architectures. This is achieved by exploiting simple datapath units with deep processing pipelines. However, these architectures are highly susceptible to pipeline bubbles resulting from data and control hazards; the only way to mitigate against these is manual interleaving of
application tasks on each datapath, since no suitable automated interleaving approach exists. In this paper we describe a new automated integrated mapping/scheduling approach to map algorithm tasks to processors and a new low-complexity list scheduling technique to generate the interleaved schedules. When applied to a spatial Fixed-Complexity Sphere Decoding (FSD) detector
for next-generation Multiple-Input Multiple-Output (MIMO) systems, the resulting schedules achieve real-time performance for IEEE 802.11n systems on a network of 16-way SIMD processors on FPGA, enable better performance/complexity balance than current approaches and produce results comparable to handcrafted implementations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-dependent density-functional theory is a rather accurate and efficient way to compute electronic excitations for finite systems. However, in the macroscopic limit (systems of increasing size), for the usual adiabatic random-phase, local-density, or generalized-gradient approximations, one recovers the Kohn-Sham independent-particle picture, and thus the incorrect band gap. To clarify this trend, we investigate the macroscopic limit of the exchange-correlation kernel in such approximations by means of an algebraical analysis complemented with numerical studies of a one-dimensional tight-binding model. We link the failure to shift the Kohn-Sham spectrum of these approximate kernels to the fact that the corresponding operators in the transition space act only on a finite subspace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taguchi method was applied to investigate the optimal operating conditions in the preparation of activated carbon using palm kernel shell with quadruple control factors: irradiation time, microwave power, concentration of phosphoric acid as impregnation substance and impregnation ratio between acid and palm kernel shell. The best combination of the control factors as obtained by applying Taguchi method was microwave power of 800 W, irradiation time of 17 min, impregnation ratio of 2, and acid concentration of 85%. The noise factor (particle size of raw material) was considered in a separate outer array, which had no effect on the quality of the activated carbon as confirmed by t-test. Activated carbon prepared at optimum combination of control factors had high BET surface area of 1,473.55 m² g-1 and high porosity. The adsorption equilibrium and kinetic data can satisfactorily be described by the Langmuir isotherm and a pseudo-second-order kinetic model, respectively. The maximum adsorbing capacity suggested by the Langmuir model was 1000 mg g-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the local order estimation of nonlinear autoregressive systems with exogenous inputs (NARX), which may have different local dimensions at different points. By minimizing the kernel-based local information criterion introduced in this paper, the strongly consistent estimates for the local orders of the NARX system at points of interest are obtained. The modification of the criterion and a simple procedure of searching the minimum of the criterion, are also discussed. The theoretical results derived here are tested by simulation examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the variable selection problem for a nonlinear non-parametric system. Two approaches are proposed, one top-down approach and one bottom-up approach. The top-down algorithm selects a variable by detecting if the corresponding partial derivative is zero or not at the point of interest. The algorithm is shown to have not only the parameter but also the set convergence. This is critical because the variable selection problem is binary, a variable is either selected or not selected. The bottom-up approach is based on the forward/backward stepwise selection which is designed to work if the data length is limited. Both approaches determine the most important variables locally and allow the unknown non-parametric nonlinear system to have different local dimensions at different points of interest. Further, two potential applications along with numerical simulations are provided to illustrate the usefulness of the proposed algorithms.