6 resultados para NILPOTENT
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Abstract Let F be a reduced irreducible root system and R be a commutative ring. Further, let G(F,R) be a Chevalley group of type F over R and E(F,R) be its elementary subgroup. We prove that if the rank of F is at least 2 and the Bass-Serre dimension of R is finite, then the quotient G(F,R)/E(F,R) is nilpotent by abelian. In particular, when G(F,R) is simply connected the quotient K1(F,R)=G(F,R)/E(F,R) is nilpotent. This result was previously established by Bak for the series A1 and by Hazrat for C1 and D1. As in the above papers we use the localisation-completion method of Bak, with some technical simplifications.
Resumo:
Let A be a unital dense algebra of linear mappings on a complex vector space X. Let φ = Σn i=1 Mai,bi be a locally quasi-nilpotent elementary operator of length n on A. We show that, if {a1, . . . , an} is locally linearly independent, then the local dimension of V (φ) = span{biaj : 1 ≤ i, j ≤ n} is at most n(n−1) 2 . If ldim V (φ) = n(n−1) 2 , then there exists a representation of φ as φ = Σn i=1 Mui,vi with viuj = 0 for i ≥ j. Moreover, we give a complete characterization of locally quasinilpotent elementary operators of length 3.
Resumo:
By the Golod–Shafarevich theorem, an associative algebra $R$ given by $n$ generators and $<n^2/3$ homogeneous quadratic relations is not 5-step nilpotent. We prove that this estimate is optimal. Namely, we show that for every positive integer $n$, there is an algebra $R$ given by $n$ generators and $\lceil n^2/3\rceil$ homogeneous quadratic relations such that $R$ is 5-step nilpotent.
Resumo:
We discuss some necessary and some sufficient conditions for an elementary operator x↦∑ni=1aixbi on a Banach algebra A to be spectrally bounded. In the case of length three, we obtain a complete characterisation when A acts irreducibly on a Banach space of dimension greater than three.