Optimal 5-step nilpotent quadratic algebras


Autoria(s): Shkarin, Stanislav; Iyudu, Natalia
Data(s)

15/08/2014

Resumo

By the Golod–Shafarevich theorem, an associative algebra $R$ given by $n$ generators and $<n^2/3$ homogeneous quadratic relations is not 5-step nilpotent. We prove that this estimate is optimal. Namely, we show that for every positive integer $n$, there is an algebra $R$ given by $n$ generators and $\lceil n^2/3\rceil$ homogeneous quadratic relations such that $R$ is 5-step nilpotent.

Identificador

http://pure.qub.ac.uk/portal/en/publications/optimal-5step-nilpotent-quadratic-algebras(f9e0d34a-50b2-4af5-a21e-810b8666f492).html

http://dx.doi.org/10.1016/j.jalgebra.2014.04.015

Idioma(s)

eng

Direitos

info:eu-repo/semantics/closedAccess

Fonte

Shkarin , S & Iyudu , N 2014 , ' Optimal 5-step nilpotent quadratic algebras ' Journal of Algebra , vol 412 , pp. 1-14 . DOI: 10.1016/j.jalgebra.2014.04.015

Palavras-Chave #quadratic algebras, Anick's conjecture, Golod-Shafarevich theorem
Tipo

article