62 resultados para Molecular dynamics
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free-energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the transition temperature.
Resumo:
Ab initio molecular dynamics simulations have been performed for the first time on the room-temperature organic ionic liquid dimethyl imidazolium chloride [DMIM][Cl] using density functional theory. The aim is to compare the local liquid structure with both that obtained from two different classical force fields and from neutron scattering experiments. The local structure around the cation shows significant differences compared to both the classical calculations and the neutron results. In particular, and unlike in the gas-phase ion pair, chloride ions tend to be located near a ring C-H proton in a position suggesting hydrogen bonding. The results are used to suggest ways in which the classical potentials may be improved.
Resumo:
An electronically polarizable model has been developed for the ionic liquid 1-ethyl-3-methylimidazolium nitrate (EMIM+/NO3-), Molecular dynamics simulation studies were then performed on both the polarizable and nonpolarizable versions of the model. Comparisons of shear viscosity and diffusion constants at 400 K show that the effects of polarizability are quite substantial and the polarizable model results are in better agreement with the experimental values.
Resumo:
By molecular dynamics (MD) simulations we study the crystallization process in a model system whose particles interact by a spherical pair potential with a narrow and deep attractive well adjacent to a hard repulsive core. The phase diagram of the model displays a solid-fluid equilibrium, with a metastable fluid-fluid separation. Our computations are restricted to fairly small systems (from 2592 to 10368 particles) and cover long simulation times, with constant energy trajectories extending up to 76x10(6) MD steps. By progressively reducing the system temperature below the solid-fluid line, we first observe the metastable fluid-fluid separation, occurring readily and almost reversibly upon crossing the corresponding line in the phase diagram. The nucleation of the crystal phase takes place when the system is in the two-fluid metastable region. Analysis of the temperature dependence of the nucleation time allows us to estimate directly the nucleation free energy barrier. The results are compared with the predictions of classical nucleation theory. The critical nucleus is identified, and its structure is found to be predominantly fcc. Following nucleation, the solid phase grows steadily across the system, incorporating a large number of localized and extended defects. We discuss the relaxation processes taking place both during and after the crystallization stage. The relevance of our simulation for the kinetics of protein crystallization under normal experimental conditions is discussed. (C) 2002 American Institute of Physics.
Resumo:
We introduce a novel method to simulate hydrated macromolecules with a dielectric continuum representation of the surrounding solvent. In our approach, the interaction between the solvent and the molecular degrees of freedom is described by means of a polarization density free energy functional which is minimum at electrostatic equilibrium. After a pseudospectral expansion of the polarization and a discretization of the functional, we construct the equations of motion for the system based on a Car-Parrinello technique. In the limit of the adiabatic evolution of the polarization field variables, our method provides the solution of the dielectric continuum problem "on the fly," while the molecular coordinates are propagated. In this first study, we show how our dielectric continuum molecular dynamics method can be successfully applied to hydrated biomolecules, with low cost compared to free energy simulations with explicit solvent. To our knowledge, this is the first time that stable and conservative molecular dynamic simulations of solutes can be performed for a dielectric continuum model of the solvent. (C) 2001 American Institute of Physics.
Resumo:
We report results of classical molecular-dynamics simulations of bcc and beta-Ta thin films. Thermal PVD film growth, surface roughness, argon ion bombardment, phase stability and transformation, vacancy and adatom diffusion, and thermal relaxation kinetics are discussed. Distinct differences between the two structures are observed, including a complex vacancy diffusion mechanism in beta-Ta. Embedded atom method potentials, which were fitted to bcc properties, have been used to model the Ta-Ta interactions. In order to verify the application of these potentials to the more complex beta-Ta structure, we have also performed density functional theory calculations. Results and implications of these calculations are discussed.
Resumo:
A non-adiabatic quantum molecular dynamics approach for treating the interaction of matter with intense, short-duration laser pulses is developed. This approach, which is parallelized to run on massively-parallel supercomputers, is shown to be both accurate and efficient. Illustrative results are presented for harmonic generation occurring in diatomic molecules using linearly polarized laser pulses.
Resumo:
A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment.
Resumo:
Expansion of trinucleotide repeat DNA of the classes CAG�·CTG, CGG�·CCG and GAA�·TTC are found to be associated with several neurodegenerative disorders. Different mechanisms have been attributed to the expansion of triplets, mainly involving the formation of alternate secondary structures by such repeats. This paper reports the molecular dynamics simulation of triplet repeat DNA sequences to study the basic structural features of DNA that are responsible for the formation of structures such as hairpins and slip-strand DNA leading to expansion. All the triplet repeat sequences studied were found to be more flexible compared to the control sequence unassociated with disease. Moreover, flexibility was found to be in the order CAG�·CTG > CGG�·CCG = GAA�·TTC, the highly flexible CAG�·CTG repeat being the most common cause of neurodegenerative disorders. In another simulation, a single G�·C to T�·A mutation at the 9th position of the CAG�·CTG repeat exhibited a reduction in bending compared to the pure 15-mer CAGâ�¢CTG repeat. EPM1 dodecamer repeat associated with the pathogenesis of progressive myoclonus epilepsy was also simulated and showed flexible nature suggesting a similar expansion mechanism.
Resumo:
The liquid structure of 1-methyl-4-cyanopyridinium bis {(trifluoromethyl)sulfonyl}imide, a prototypical ionic liquid containing an electron-withdrawing group on the cation, has been investigated at 368 K. Experimental neutron scattering combined with empirical potential structure refinement analysis of the data and classical molecular dynamics simulations have been used to probe the liquid structure in detail. Both techniques generated highly consistent results that provide valuable validation of the force fields and refinement approaches. A significant degree of apparent charge ordering is found in the liquid structure, although the nonspherical shape of the ions results in interpenetration of cations into the first shell of adjacent cations, with much shorter closest contact distances than the averaged center-of-mass cation-cation and cation-anion separations.