11 resultados para Microwave absorbing materials

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A system capable of deployment as a microwave security sensor which can automatically reject background clutter is presented. The principle of operation is based on analog homodyne detection using 1. Q single side-band down conversion of an AM backscattered modulating signal envelope. A demonstrator is presented which operates with a carrier frequency of 2 GHz and 500 KHz backscattered signal. When deployed in a multipath rich open plan office environment the S/N ratio obtained at the detection output was better than 20 dB at 20 in range with 20 dBm EIRP in a 2 MHz detection bandwidth despite the presence of time varying and static clutter. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 2492-2495, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24636

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent synthesis of a new hydrogen binary hydrate with the sH structure has highlighted the potential storage capabilities of water clathrates [T. A. Strobel, C. A. Koh, and E. D. Sloan, J. Phys. Chem. B 112, 1885 (2008) and A. R. C. Duarte, A. Shariati, L. J. Rovetto, and C. J. Peters, J. Phys. Chem. B 112, 1888 (2008)]. In this work, the absorption of hydrogen and the promoters used in the experimental work are considered using a simplified model for the host-guest interaction, which allows one to understand the stabilizing effects of multiple help molecules. Two further hypothetical clathrates, which are isostructural with known zeolite structures, are also investigated. It is shown that the energy gained by absorbing adamantane into these two frameworks is far greater than that gained upon absorption of adamantane into the sH structure. Hence, a clathrate with the same topology as the DDR (Sigma 1) zeolite may be synthesizable with adamantane and hydrogen as guest molecules as, in the conditions explored here, this phase appears to be more stable than the sH structure. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3142503]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcrystalline indium(III) selenide was prepared from a diphenyl diselenide precursor and a range of chloroindate(III) ionic liquids via a microwave-assisted ionothermal route; this is the first report on the use of either microwave irradiation or ionic liquids to prepare this material. The influence of the reaction temperature, dilution with a spectator ionic liquid and variation of the cation and the anion of the ionic liquid on the product morphology and composition were investigated. This resulted in a time-efficient and facile one-pot reaction to produce microcrystalline indium(III) selenide. The product formation in the ionic liquids has been monitored using Raman spectroscopy. The products have been characterised using PXRD, SEM and EDX. Advantages of this new route, such as the ease of solubilisation of all reactants into one phase at high concentration, the negligible vapour pressure irrespective of the reaction temperature, very fast reaction times, ease of potential scale-up and reproducibility are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bi-directional Evolutionary Structural Optimisation (BESO) method is a numerical topology optimisation method developed for use in finite element analysis. This paper presents a particular application of the BESO method to optimise the energy absorbing capability of metallic structures. The optimisation objective is to evolve a structural geometry of minimum mass while ensuring that the kinetic energy of an impacting projectile is reduced to a level which prevents perforation. Individual elements in a finite element mesh are deleted when a prescribed damage criterion is exceeded. An energy absorbing structure subjected to projectile impact will fail once the level of damage results in a critical perforation size. It is therefore necessary to constrain an optimisation algorithm from producing such candidate solutions. An algorithm to detect perforation was implemented within a BESO framework which incorporated a ductile material damage model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc selenide nanospheres were prepared from a diphenyl diselenide precursor and a range of chloro- and bromozincate(II) ionic liquids via a microwave-assisted ionothermal route; this is the first report on the use of microwave irradiation in combination with ionic liquids to prepare this material. The method is a time-efficient and a facile one-pot reaction to produce zinc(II) selenide nanomaterials. The product formation in the ionic liquids has been monitored using Raman spectroscopy. The products have been characterised using PXRD, SEM, EDX, photoluminescence and UV-VIS spectroscopy. Advantages of this new route, such as ease of solubilisation of all reactants into one phase at high concentration, the negligible vapour pressure irrespective of the reaction temperature, very fast reaction times, ease of potential scale-up and reproducibility are discussed.



Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microwave (MW)-assisted crosslinking process to prepare hydrogel-forming microneedle (MN) arrays was evaluated. Conventionally, such MN arrays are prepared using processes that includes a thermal crosslinking step. Polymeric MN arrays were prepared using poly(methyl vinyl ether-alt-maleic acid) crosslinked by reaction with poly(ethylene glycol) over 24 h at 80 °C. Polymeric MN arrays were prepared to compare conventional process with the novel MW-assisted crosslinking method. Infrared spectroscopy was used to evaluate the crosslinking degree, evaluating the area of the carbonyl peaks (2000–1500 cm−1). It was shown that, by using the MW-assisted process, MN with a similar crosslinking degree to those prepared conventionally can be obtained in only 45 min. The effects of the crosslinking process on the properties of these materials were also evaluated. For this purpose swelling kinetics, mechanical characterisation, and insertion studies were performed. The results suggest that MN arrays prepared using the MW assisted process had equivalent properties to those prepared conventionally but can be produced 30 times faster. Finally, an in vitro caffeine permeation across excised porcine skin was performed using conventional and MW-prepared MN arrays. The release profiles obtained can be considered equivalent, delivering in both cases 3000–3500 μg of caffeine after 24 h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcystins are one of the primary hepatotoxic cyanotoxins released from cyanobacteria. The presence of these compounds in water has resulted in the death of both humans and domestic and wild animals. Although microcystins are chemically stable titanium dioxide photocatalysis has proven to be an effective process for the removal of these compounds in water. One problem with this process is that it requires UV light and therefore in order to develop effective commercial reactor units that could be powered by solar light it is necessary to utilize a photocatalyst that is active with visible light. In this paper we report on the application of four visible light absorbing photocatalysts for the destruction of microcystin-LR in water. The rhodium doped material proved to be the most effective material followed by a carbon-modified titania. The commercially available materials were both relatively poor photocatalysts under visible radiation while the platinum doped catalyst also displayed a limited activity for toxin destruction. © 2009 Elsevier Ltd. All rights reserved.