43 resultados para Micro-topography analysis

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites with a weak interface between the filler and matrix which are susceptible to interfacial crack formation are studied. A finite-element model is developed to predict the stres/strain behavior of particulate composites with an interfacial crack. This condition can be distinguished as a partially bonded inclusion. Another case arises when there is no bonding between the inclusion and the matrix. In this latter case the slip boundary condition is imposed on the section of the interface which remains closed. The states of stress and displacement fields are obtained for both cases. The location of any further deformation through crazing or shear band formation is identified as the crack tip. A completely unbonded inclusion with partial slip at a section of the interface reduces the concentration of the stress at the crack tip. Whereas this might lead to slightly higher strength, it decreases the load-transfer efficiency and stiffness of this type of composite. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Micro-mechanical analysis of polymeric composites provides a powerful means for the quantitative assessment of their bulk behavior. In this paper we describe a robust finite element model (FEM) for the micro-structural modeling of the behavior of particulate filled polymer composites under external loads. The developed model is applied to simulate stress distribution in polymer composites containing particulate fillers. Quantitative information about the magnitude and location of maximum stress concentrations obtained from these simulations is used to predict the dominant failure and crack growth mechanisms in these composites. The model predictions are compared with the available experimental data and also with the values found using other methods reported in the literature. These comparisons show the range of the validity of the developed model and its predictive potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anillin is an actin-binding protein that can bind septins and is a component of the cytokinetic ring. We assessed the anillin expression in 7,579 human tissue samples and cell lines by DNA micro-array analysis. Anillin is expressed ubiquitously but with variable levels of expression, being highest in the central nervous system. The median level of anillin mRNA expression was higher in tumors than normal tissues (median fold increase 2.58; 95% confidence intervals, 2.19-5.68, P < 0.0001) except in the central nervous system where anillin in RNA levels were lower in tumors. We developed a sensitive reverse transcription-PCR strategy to show that anillin mRNA is expressed in cell lines and in cDNA panels derived from fetal and adult tissues, thus validating the microarray data. We compared anillin with Ki67 in RNA expression and found a significant linear relationship between anillin and Ki67 mRNA expression (Spearmann r similar to 0.6, P < 0.0001). Anillin mRNA expression was analyzed during tumor progression in breast, ovarian, kidney, colorectal, hepatic, lung, endometrial, and pancreatic tumors and in all tissues there was progressive, increase in anillin mRNA expression from normal to benign to malignant to metastatic disease. Finally, we used anti-anillin sera and found nuclear anillin immuncireactivity to be widespread in normal tissues, often not correlating with proliferative compartments. These data provide insight into the existence of non proliferation-associated activities of anillin and roles in interphase nuclei. Thus, anillin is overexpressed in diverse common human tumors, but not simply as a consequence of being a proliferation marker. Anillin may have potential as a novel biomarker.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The search for materials or systems exhibiting a high magnetic saturation has been of longstanding importance. It has been suggested that increased saturation could be achieved by coupling a transition metal via a spacer to a rare earth. We report Gd/Cr/Fe70Co30 multilayer stacks and find reduced yet modulating magnetic moment as a function of Cr thickness. Through a micro structural analysis the lowered moment is indicated by the nucleation of the ultrathin Gd films into an fcc phase. We discuss the possible solution in terms of quasi-perfect lattice match seed material to promote growth of hcp Gd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Raman and spreading resistance profiling have been used to analyze defects in germanium caused by hydrogen and helium implants, of typical fluences used in layer transfer applications. Beveling has been used to facilitate probing beyond the laser penetration depth. Results of Raman mapping along the projection area reveal that after post-implant annealing at 400°C, some crystal damage remains, while at 600°C, the crystal damage has been repaired. Helium implants create acceptor states beyond the projected range, and for both hydrogen and helium, 1×1016 acceptors/cm2 remain after 600°C. These are thought to be vacancy-related point defect clusters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is an increasing demand to develop biosensor monitoring devices capable of biomarker profiling for predicting animal adulteration and detecting multiple chemical contaminants or toxins in food produce. Surface plasmon resonance (SPR) biosensors are label free detection systems that monitor the binding of specific biomolecular recognition elements with binding partners. Essential to this technology are the production of biochips where a selected binding partner, antibody, biomarker protein or low molecular weight contaminant, is immobilised. A micro-fluidic immobilisation device allowing the covalent attachment of up to 16 binding partners in a linear array on a single surface has been developed for compatibility with a prototype multiplex SPR analyser.

The immobilisation unit and multiplex SPR analyser were respectively evaluated in their ability to be fit-for-purpose for binding partner attachment and detection of high and low molecular weight molecules. The multiplexing capability of the dual technology was assessed using phycotoxin concentration analysis as a model system. The parent compounds of four toxin groups were immobilised within a single chip format and calibration curves were achieved. The chip design and SPR technology allowed the compartmentalisation of the binding interactions for each toxin group offering the added benefit of being able to distinguish between toxin families and perform concentration analysis. This model is particularly contemporary with the current drive to replace biological methods for phycotoxin screening.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermal fatigue analysis based on 2D finite difference and 3D finite element methods is carried out to study the performance of solar panel structure during micro-satellite life time. Solar panel primary structure consists of honeycomb structure and composite laminates. The 2D finite difference (I-DEAS) model yields predictions of the temperature profile during one orbit. Then, 3D finite element analysis (ANSYS) is applied to predict thermal fatigue damage of solar panel structure. Meshing the whole structure with 2D multi-layer shell elements with sandwich option is not efficient, as it misses thermal response of the honeycomb structure. So we applied a mixed approach between 3D solid and 2D shell elements to model the solar panel structure without the sandwich option.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mounting accuracy of satellite payload and ADCS (attitude determination and control subsystem) seats is one of the requirements to achieve the satellite mission with acceptable performance. Components of mounting inaccuracy are technological inaccuracies, residual plastic deformations after loading (during transportation and orbital insertion), elastic deformations, and thermal deformations during orbital operation. This paper focuses on estimation of thermal deformations of satellite structure. Thermal analysis is executed by applying finite-difference method (IDEAS) and temperature profile for satellite components case is evaluated. Then, Perform thermal finite-element analysis applying the finite-difference model results as boundary conditions; and calculate the resultant thermal strain. Next, applying the resultant thermal strain, perform finite-element structure analysis to evaluate structure deformations at the payload and ADCS equipments seats.