117 resultados para Infrared detectors

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is shown that surface plasmons (SPs) are supported on thin PtSi films. Using a prism-air gap-sample configuration, p-polarised infra-red light (3.39-mu-m) has been coupled with approximately 95% efficiency to SPs on the silicide electrode of PtSi-Si Schottky barrier structures. Stimulating SPs offers both a means of optically characterising silicide films and of enhancing optical absorption with a view to significantly increasing the Schottky barrier photoresponse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PtSi/Si Schottky junctions, fabricated using a conventional technique of Pt deposition with a subsequent thermal anneal, are examined using X-ray diffraction, atomic force microscopy and a novel prism/gap/sample optical coupling system. With the aid of X-ray diffraction and atomic farce microscopy it is shown that a post-anneal etch in aqua regia is essential for the removal of an unreacted, rough surface layer of Pt, to leave a much smoother PtSi film. The prism/gap/sample or Otto coupling rig is mounted in a small UHV chamber and has facilities for remote variation of the gap (by virtue of a piezoactuator system) and variation of the temperature in the range of similar to 300 K - 85 K. The system is used to excite surface plasmon polaritons on the outer surface of the PtSi and thus produce sensitive optical characterisation as a function of temperature. This is performed in order to yield an understanding of the temperature dependence of phonon and interface scattering of carriers in the PtSi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monte Carlo calculations of quantum yield in PtSi/p-Si infrared detectors are carried out taking into account the presence of a spatially distributed barrier potential. In the 1-4 mu m wavelength range it is found that the spatial inhomogeneity of the barrier has no significant effect on the overall device photoresponse. However, above lambda = 4.0 mu m and particularly as the cut-off wavelength (lambda approximate to 5.5 mu m) is approached, these calculations reveal a difference between the homogeneous and inhomogeneous barrier photoresponse which becomes increasingly significant and exceeds 50% at lambda = 5.3 mu m. It is, in fact, the inhomogeneous barrier which displays an increased photoyield, a feature that is confirmed by approximate analytical calculations assuming a symmetric Gaussian spatial distribution of the barrier. Furthermore, the importance of the silicide layer thickness in optimizing device efficiency is underlined as a trade-off between maximizing light absorption in the silicide layer and optimizing the internal yield. The results presented here address important features which determine the photoyield of PtSi/Si Schottky diodes at energies below the Si absorption edge and just above the Schottky barrier height in particular.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the Otto geometry of attenuated total reflection (prism-air gap-sample), front illuminated PtSi/Si Schottky barrier detectors are shown to exhibit enhanced photocurrent at surface plasmon resonance in the near infrared region. Correlation of the measured photocurrent with the calculated transmittance of light into the Si substate is demonstrated. The transmittance, which is due to surface plasmon re-radiation, is the optical parameter of principal importance in photosignal generation since the photon energies used here are greater than the silicon intrinsic bandgap. The results presented here indicate clearly the important features in optimizing surface plasmon enhancement in photodetection both above and below the silicon absorption edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing of motion information by the visual system can be decomposed into two general stages; point-by-point local motion extraction, followed by global motion extraction through the pooling of the local motion signals. The direction aftereVect (DAE) is a well known phenomenon in which prior adaptation to a unidirectional moving pattern results in an exaggerated perceived direction diVerence between the adapted direction and a subsequently viewed stimulus moving in a diVerent direction. The experiments in this paper sought to identify where the adaptation underlying the DAE occurs within the motion processing hierarchy. We found that the DAE exhibits interocular transfer, thus demonstrating that the underlying adapted neural mechanisms are binocularly driven and must, therefore, reside in the visual cortex. The remaining experiments measured the speed tuning of the DAE, and used the derived function to test a number of local and global models of the phenomenon. Our data provide compelling evidence that the DAE is driven by the adaptation of motion-sensitive neurons at the local-processing stage of motion encoding. This is in contrast to earlier research showing that direction repulsion, which can be viewed as a simultaneous presentation counterpart to the DAE, is a global motion process. This leads us to conclude that the DAE and direction repulsion reflect interactions between motion-sensitive neural mechanisms at different levels of the motion-processing hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semi-phenomenological model describing wideband dielectric and far-infrared spectra of liquid water was proposed recently by the same authors [J. Mol. Struct. 606 (2002) 9], where a small dipole-moment component changing harmonically with time determines a weak absorption band (termed here the R-band) centred at the wavenumber v similar to 200 cm(-1). In the present work, a rough molecular theory of the R-band based on the concept of elastic interactions is given. Stretching and bending of hydrogen bonds cause restricted rotation (RR) of a polar water molecule in terms of a dimer comprising the H- bonded molecules. Analytical expression for the RR frequency nu(str) is derived as a function of the RR amplitude, geometrical parameters and force constants. The density g(nu(str)) of frequency distribution is shown to be centred in the R-band. The spectrum of the dipolar auto-correlation function calculated for this structural-dynamical model is found. A composite model comprising two intermolecular potentials is proposed, which yields for water a good description of the experimental wideband (from 0 to 1000 cm(- 1)) spectra of complex permittivity and of absorption coefficient. The presented interpretation of these spectra is based on a concept that water presents a two-component solution, with components differing by the types of molecular rotation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wideband far infrared (FIR) spectra of complex permittivity e(p) of ice are calculated in terms of a simple analytical theory based on the method of dipolar autocorrelation functions. The molecular model represents a revision of the model recently presented for liquid water in Adv. Chem. Phys. 127 (2003) 65. A composite two-fractional model is proposed. The model is characterised by three phenomenological potential wells corresponding to the three FIR bands observed in ice. The first fraction comprises dipoles reorienting in a rather narrow and deep hat-like well; these dipoles generate the librational band centred at the frequency approximate to 880 cm(-1). The second fraction comprises elastically interacting particles; they generate two nearby bands placed around frequency 200 cm(-1). For description of one of these bands the harmonic oscillator (HO) model is used, in which translational oscillations of two charged molecules along the H-bond are considered. The other band is produced by the H-bond stretch, which governs hindered rotation of a rigid dipole. Such a motion and its dielectric response are described in terms of a new cut parabolic (CP) model applicable for any vibration amplitude. The composite hat-HO-CP model results in a smooth epsilon(nu) ice spectrum, which does not resemble the noise-like spectra of ice met in the known literature. The proposed theory satisfactorily agrees with the experimental ice spectrum measured at - 7 degrees C. The calculated longitudinal optic-transverse optic (LO-TO) splitting occurring at approximate to 250 cm(-1) qualitatively agrees with the measured data. (c) 2004 Elsevier B.V. All rights reserved.