27 resultados para High level architecture

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transfer ionization process offers a unique opportunity to study radial and angular electron correlations in the helium atom. We report calculations for the multiple differential cross sections of the transfer ionization process p + He --> H + He++ + e(-). The results of these calculations demonstrate the strong sensitivity of the fully differential cross sections to fine details of electron correlation in the target atom. Specifically, angular electron correlation in the ground state of helium results in a broad peak in the electron emission spectra in the backward direction, relative to the incoming beam. Our model explains some of the key effects observed in measurements of multiple differential cross sections using the COLTRIMS technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms of antibiotic resistance were examined in nalidixic acid-resistant Salmonella enterica serovar Enteritidis field isolates displaying decreased susceptibility to ciprofloxacin and in in vitro-derived ciprofloxacin-resistant mutants (104-cip and 5408-cip). All field isolates harbored a single gyrA mutation (D87Y). Deletion of acrB and complementation with wild-type gyrA increased quinolone susceptibility. Selection for ciprofloxacin resistance was associated with the development of an additional gyrA (S83F) mutation in 104-cip, novel gyrB (E466D) and parE (V461G) mutations in 5408-cip, overexpression of acrB and decreased susceptibility to nonquinolone antibiotics in both mutants, and decreased OmpF production and altered lipopoly- saccharide in 104-cip. Complementation of mutated gyrA and gyrB with wild-type alleles restored susceptibility to quinolones in 104-cip and significantly decreased the ciprofloxacin MIC in 5408-cip. Complementation of parE had no effect on quinolone MICs. Deletion of acrB restored susceptibility to ciprofloxacin and other antibiotics tested. Both soxS and marA were overexpressed in 104-cip, and ramA was overexpressed in 5408-cip. Inactivation of each of these global regulators lowered ciprofloxacin MICs, decreased expression of acrB, and restored susceptibility to other antibiotics. Mutations were found in soxR (R20H) and in soxS (E52K) in 104-cip and in ramR (G25A) in 5408-cip. In conclusion, both efflux activity and a single gyrA mutation contribute to nalidixic acid resistance and reduced ciprofloxacin sensitivity. Ciprofloxacin resistance and decreased susceptibility to multiple antibiotics can result from different genetic events leading to development of target gene mutations, increased efflux activity resulting from differential expression of global regulators associated with mutations in their regulatory genes, and possible altered membrane permeability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces hybrid address spaces as a fundamental design methodology for implementing scalable runtime systems on many-core architectures without hardware support for cache coherence. We use hybrid address spaces for an implementation of MapReduce, a programming model for large-scale data processing, and the implementation of a remote memory access (RMA) model. Both implementations are available on the Intel SCC and are portable to similar architectures. We present the design and implementation of HyMR, a MapReduce runtime system whereby different stages and the synchronization operations between them alternate between a distributed memory address space and a shared memory address space, to improve performance and scalability. We compare HyMR to a reference implementation and we find that HyMR improves performance by a factor of 1.71× over a set of representative MapReduce benchmarks. We also compare HyMR with Phoenix++, a state-of-art implementation for systems with hardware-managed cache coherence in terms of scalability and sustained to peak data processing bandwidth, where HyMR demon- strates improvements of a factor of 3.1× and 3.2× respectively. We further evaluate our hybrid remote memory access (HyRMA) programming model and assess its performance to be superior of that of message passing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An area-efficient high-throughput architecture based on distributed arithmetic is proposed for 3D discrete wavelet transform (DWT). The 3D DWT processor was designed in VHDL and mapped to a Xilinx Virtex-E FPGA. The processor runs up to 85 MHz, which can process the five-level DWT analysis of a 128 x 128 x 128 fMRI volume image in 20 ms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model Driven Architecture supports the transformation from reusable models to executable software. Business representations, however, cannot be fully and explicitly represented in such models for direct transformation into running systems. Thus, once business needs change, the language abstractions used by MDA (e.g. Object Constraint Language / Action Semantics), being low level, have to be edited directly. We therefore describe an Agent-oriented Model Driven Architecture (AMDA) that uses a set of business models under continuous maintenance by business people, reflecting the current business needs and being associated with adaptive agents that interpret the captured knowledge to behave dynamically. Three contributions of the AMDA approach are identified: 1) to Agent-oriented Software Engineering, a method of building adaptive Multi-Agent Systems; 2) to MDA, a means of abstracting high level business-oriented models to align executable systems with their requirements at runtime; 3) to distributed systems, the interoperability of disparate components and services via the agent abstraction.