193 resultados para Ends processing

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly--lactide (PLLA) is one of the most significant members of a group of polymers regarded as bioabsorbable. Degradation of PLLA proceeds through hydrolysis of the ester bonds in the polymer chains and is influenced significantly by the polymer's molecular weight and crystallinity. To evaluate the effects of processing and sterilisation on these properties, PLLA pellets were either compression moulded or extruded, subjected to annealing at 120°C for 4 h and sterilised by ethylene oxide (EtO) gas. Procedures were used to evaluate the mechanical properties, molecular weight and crystallinity. Upon processing, the crystallinity of the material fell from 61% for the PLLA pellets to 12% and 20% for the compressed and extruded components, respectively. After annealing, crystallinity increased to 43% for the compression-moulded material and 40% for the extruded material. Crystallinity further increased upon EtO sterilisation. A slight decrease in molecular weight was observed for the extruded material through processing, annealing and sterilisation. Young's modulus generally increased with increasing crystallinity, and extension at break and tensile strength decreased. The results from this investigation suggest that PLLA is sensitive to processing and sterilisation, altering properties critical to its degradation rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of this work is to assess the suitability of metallocene catalyzed linear low-density polyethylenes for the rotational molding of foams and to link the material and processing conditions to cell morphology and part mechanical properties (flexural and compressive strength). Through adjustments to molding conditions, the significant processing and physical material parameters that optimize metallocene catalyzed linear low-density polyethylene foam structure have been identified. The results obtained from an equivalent conventional grade of Ziegler-Natta catalyzed linear low-density polyethylene are used as a basis for comparison. The key findings of this study are that metallocene catalyzed LLDPE can be used in rotational foam molding to produce a foam that will perform as well as a ZieglerNatta catalyzed foam and that foam density Is by far the most Influential factor over mechanical properties of foam. © 2004 Society of Plastics Engineers.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronaviruses are important pathogens that cause acute respiratory diseases in humans. Replication of the 30-kb positive-strand RNA genome of coronaviruses and discontinuous synthesis of an extensive set of subgenome-length RNAs (transcription) are mediated by the replicase-transcriptase, a barely characterized protein complex that comprises several cellular proteins and up to 16 viral subunits. The coronavirus replicase-transcriptase was recently predicted to contain RNA-processing enzymes that are extremely rare or absent in other RNA viruses. Here, we established and characterized the activity of one of these enzymes, replicative nidoviral uridylate-specific endoribonuclease (NendoU). It is considered a major genetic marker that discriminates nidoviruses (Coronaviridae, Arteriviridae, and Roniviridae) from all other RNA virus families. Bacterially expressed forms of NendoU of severe acute respiratory syndrome coronavirus and human coronavirus 229E were revealed to cleave single-stranded and double-stranded RNA in a Mn2+-dependent manner. Single-stranded RNA was cleaved less specifically and effectively, suggesting that double-stranded RNA is the biologically relevant NendoU substrate. Double-stranded RNA substrates were cleaved upstream and downstream of uridylates at GUU or GU sequences to produce molecules with 2'-3' cyclic phosphate ends. 2'-O-ribose-methylated RNA substrates proved to be resistant to cleavage by NendoU, indicating a functional link with the 2'-O-ribose methyltransferase located adjacent to NendoU in the coronavirus replicative polyprotein. A mutagenesis study verified potential active-site residues and allowed us to inactivate NendoU in the full-length human coronavirus 229E clone. Substitution of D6408 by Ala was shown to abolish viral RNA synthesis, demonstrating that NendoU has critical functions in viral replication and transcription.