8 resultados para Ends processing

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal processing techniques play important roles in the design of digital communication systems. These include information manipulation, transmitter signal processing, channel estimation, channel equalization and receiver signal processing. By interacting with communication theory and system implementing technologies, signal processing specialists develop efficient schemes for various communication problems by wisely exploiting various mathematical tools such as analysis, probability theory, matrix theory, optimization theory, and many others. In recent years, researchers realized that multiple-input multiple-output (MIMO) channel models are applicable to a wide range of different physical communications channels. Using the elegant matrix-vector notations, many MIMO transceiver (including the precoder and equalizer) design problems can be solved by matrix and optimization theory. Furthermore, the researchers showed that the majorization theory and matrix decompositions, such as singular value decomposition (SVD), geometric mean decomposition (GMD) and generalized triangular decomposition (GTD), provide unified frameworks for solving many of the point-to-point MIMO transceiver design problems.

In this thesis, we consider the transceiver design problems for linear time invariant (LTI) flat MIMO channels, linear time-varying narrowband MIMO channels, flat MIMO broadcast channels, and doubly selective scalar channels. Additionally, the channel estimation problem is also considered. The main contributions of this dissertation are the development of new matrix decompositions, and the uses of the matrix decompositions and majorization theory toward the practical transmit-receive scheme designs for transceiver optimization problems. Elegant solutions are obtained, novel transceiver structures are developed, ingenious algorithms are proposed, and performance analyses are derived.

The first part of the thesis focuses on transceiver design with LTI flat MIMO channels. We propose a novel matrix decomposition which decomposes a complex matrix as a product of several sets of semi-unitary matrices and upper triangular matrices in an iterative manner. The complexity of the new decomposition, generalized geometric mean decomposition (GGMD), is always less than or equal to that of geometric mean decomposition (GMD). The optimal GGMD parameters which yield the minimal complexity are derived. Based on the channel state information (CSI) at both the transmitter (CSIT) and receiver (CSIR), GGMD is used to design a butterfly structured decision feedback equalizer (DFE) MIMO transceiver which achieves the minimum average mean square error (MSE) under the total transmit power constraint. A novel iterative receiving detection algorithm for the specific receiver is also proposed. For the application to cyclic prefix (CP) systems in which the SVD of the equivalent channel matrix can be easily computed, the proposed GGMD transceiver has K/log_2(K) times complexity advantage over the GMD transceiver, where K is the number of data symbols per data block and is a power of 2. The performance analysis shows that the GGMD DFE transceiver can convert a MIMO channel into a set of parallel subchannels with the same bias and signal to interference plus noise ratios (SINRs). Hence, the average bit rate error (BER) is automatically minimized without the need for bit allocation. Moreover, the proposed transceiver can achieve the channel capacity simply by applying independent scalar Gaussian codes of the same rate at subchannels.

In the second part of the thesis, we focus on MIMO transceiver design for slowly time-varying MIMO channels with zero-forcing or MMSE criterion. Even though the GGMD/GMD DFE transceivers work for slowly time-varying MIMO channels by exploiting the instantaneous CSI at both ends, their performance is by no means optimal since the temporal diversity of the time-varying channels is not exploited. Based on the GTD, we develop space-time GTD (ST-GTD) for the decomposition of linear time-varying flat MIMO channels. Under the assumption that CSIT, CSIR and channel prediction are available, by using the proposed ST-GTD, we develop space-time geometric mean decomposition (ST-GMD) DFE transceivers under the zero-forcing or MMSE criterion. Under perfect channel prediction, the new system minimizes both the average MSE at the detector in each space-time (ST) block (which consists of several coherence blocks), and the average per ST-block BER in the moderate high SNR region. Moreover, the ST-GMD DFE transceiver designed under an MMSE criterion maximizes Gaussian mutual information over the equivalent channel seen by each ST-block. In general, the newly proposed transceivers perform better than the GGMD-based systems since the super-imposed temporal precoder is able to exploit the temporal diversity of time-varying channels. For practical applications, a novel ST-GTD based system which does not require channel prediction but shares the same asymptotic BER performance with the ST-GMD DFE transceiver is also proposed.

The third part of the thesis considers two quality of service (QoS) transceiver design problems for flat MIMO broadcast channels. The first one is the power minimization problem (min-power) with a total bitrate constraint and per-stream BER constraints. The second problem is the rate maximization problem (max-rate) with a total transmit power constraint and per-stream BER constraints. Exploiting a particular class of joint triangularization (JT), we are able to jointly optimize the bit allocation and the broadcast DFE transceiver for the min-power and max-rate problems. The resulting optimal designs are called the minimum power JT broadcast DFE transceiver (MPJT) and maximum rate JT broadcast DFE transceiver (MRJT), respectively. In addition to the optimal designs, two suboptimal designs based on QR decomposition are proposed. They are realizable for arbitrary number of users.

Finally, we investigate the design of a discrete Fourier transform (DFT) modulated filterbank transceiver (DFT-FBT) with LTV scalar channels. For both cases with known LTV channels and unknown wide sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how to optimize the transmitting and receiving prototypes of a DFT-FBT such that the SINR at the receiver is maximized. Also, a novel pilot-aided subspace channel estimation algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) systems with quasi-stationary multi-path Rayleigh fading channels. Using the concept of a difference co-array, the new technique can construct M^2 co-pilots from M physical pilot tones with alternating pilot placement. Subspace methods, such as MUSIC and ESPRIT, can be used to estimate the multipath delays and the number of identifiable paths is up to O(M^2), theoretically. With the delay information, a MMSE estimator for frequency response is derived. It is shown through simulations that the proposed method outperforms the conventional subspace channel estimator when the number of multipaths is greater than or equal to the number of physical pilots minus one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces fundamental equations and numerical methods for manipulating surfaces in three dimensions via conformal transformations. Conformal transformations are valuable in applications because they naturally preserve the integrity of geometric data. To date, however, there has been no clearly stated and consistent theory of conformal transformations that can be used to develop general-purpose geometry processing algorithms: previous methods for computing conformal maps have been restricted to the flat two-dimensional plane, or other spaces of constant curvature. In contrast, our formulation can be used to produce---for the first time---general surface deformations that are perfectly conformal in the limit of refinement. It is for this reason that we commandeer the title Conformal Geometry Processing.

The main contribution of this thesis is analysis and discretization of a certain time-independent Dirac equation, which plays a central role in our theory. Given an immersed surface, we wish to construct new immersions that (i) induce a conformally equivalent metric and (ii) exhibit a prescribed change in extrinsic curvature. Curvature determines the potential in the Dirac equation; the solution of this equation determines the geometry of the new surface. We derive the precise conditions under which curvature is allowed to evolve, and develop efficient numerical algorithms for solving the Dirac equation on triangulated surfaces.

From a practical perspective, this theory has a variety of benefits: conformal maps are desirable in geometry processing because they do not exhibit shear, and therefore preserve textures as well as the quality of the mesh itself. Our discretization yields a sparse linear system that is simple to build and can be used to efficiently edit surfaces by manipulating curvature and boundary data, as demonstrated via several mesh processing applications. We also present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity-dependent modulation of sensory systems has been documented in many organisms, and is likely to be essential for appropriate processing of information during different behavioral states. However, the mechanisms underlying these phenomena, and often their functional consequences, remain poorly characterized. I investigated the role of octopamine neurons in the flight-dependent modulation observed in visual interneurons in the fruit fly Drosophila melanogaster. The vertical system (VS) cells exhibit a boost in their response to visual motion during flight compared to quiescence. Pharmacological application of octopamine evokes responses in quiescent flies that mimic those observed during flight, and octopamine neurons that project to the optic lobes increase in activity during flight. Using genetic tools to manipulate the activity of octopamine neurons, I find that they are both necessary and sufficient for the flight-induced visual boost. This work provides the first evidence that endogenous release of octopamine is involved in state-dependent modulation of visual interneurons in flies. Further, I investigated the role of a single pair of octopamine neurons that project to the optic lobes, and found no evidence that chemical synaptic transmission via these neurons is necessary for the flight boost. However, I found some evidence that activation of these neurons may contribute to the flight boost. Wind stimuli alone are sufficient to generate transient increases in the VS cell response to motion vision, but result in no increase in baseline membrane potential. These results suggest that the flight boost originates not from a central command signal during flight, but from mechanosensory stimuli relayed via the octopamine system. Lastly, in an attempt to understand the functional consequences of the flight boost observed in visual interneurons, we measured the effect of inactivating octopamine neurons in freely flying flies. We found that flies whose octopamine neurons we silenced accelerate less than wild-type flies, consistent with the hypothesis that the flight boost we observe in VS cells is indicative of a gain control mechanism mediated by octopamine neurons. Together, this work serves as the basis for a mechanistic and functional understanding of octopaminergic modulation of vision in flying flies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses the problem of obtaining reliable velocities and displacements from accelerograms, a concern which often arises in earthquake engineering. A closed-form acceleration expression with random parameters is developed to test any strong-motion accelerogram processing method. Integration of this analytical time history yields the exact velocities, displacements and Fourier spectra. Noise and truncation can also be added. A two-step testing procedure is proposed and the original Volume II routine is used as an illustration. The main sources of error are identified and discussed. Although these errors may be reduced, it is impossible to extract the true time histories from an analog or digital accelerogram because of the uncertain noise level and missing data. Based on these uncertainties, a probabilistic approach is proposed as a new accelerogram processing method. A most probable record is presented as well as a reliability interval which reflects the level of error-uncertainty introduced by the recording and digitization process. The data is processed in the frequency domain, under assumptions governing either the initial value or the temporal mean of the time histories. This new processing approach is tested on synthetic records. It induces little error and the digitization noise is adequately bounded. Filtering is intended to be kept to a minimum and two optimal error-reduction methods are proposed. The "noise filters" reduce the noise level at each harmonic of the spectrum as a function of the signal-to-noise ratio. However, the correction at low frequencies is not sufficient to significantly reduce the drifts in the integrated time histories. The "spectral substitution method" uses optimization techniques to fit spectral models of near-field, far-field or structural motions to the amplitude spectrum of the measured data. The extremes of the spectrum of the recorded data where noise and error prevail are then partly altered, but not removed, and statistical criteria provide the choice of the appropriate cutoff frequencies. This correction method has been applied to existing strong-motion far-field, near-field and structural data with promising results. Since this correction method maintains the whole frequency range of the record, it should prove to be very useful in studying the long-period dynamics of local geology and structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomes of many positive stranded RNA viruses and of all retroviruses are translated as large polyproteins which are proteolytically processed by cellular and viral proteases. Viral proteases are structurally related to two families of cellular proteases, the pepsin-like and trypsin-like proteases. This thesis describes the proteolytic processing of several nonstructural proteins of dengue 2 virus, a representative member of the Flaviviridae, and describes methods for transcribing full-length genomic RNA of dengue 2 virus. Chapter 1 describes the in vitro processing of the nonstructural proteins NS2A, NS2B and NS3. Chapter 2 describes a system that allows identification of residues within the protease that are directly or indirectly involved with substrate recognition. Chapter 3 describes methods to produce genome length dengue 2 RNA from cDNA templates.

The nonstructural protein NS3 is structurally related to viral trypsinlike proteases from the alpha-, picorna-, poty-, and pestiviruses. The hypothesis that the flavivirus nonstructural protein NS3 is a viral proteinase that generates the termini of several nonstructural proteins was tested using an efficient in vitro expression system and antisera specific for the nonstructural proteins NS2B and NS3. A series of cDNA constructs was transcribed using T7 RNA polymerase and the RNA translated in reticulocyte lysates. Proteolytic processing occurred in vitro to generate NS2B and NS3. The amino termini of NS2B and NS3 produced in vitro were found to be the same as the termini of NS2B and NS3 isolated from infected cells. Deletion analysis of cDNA constructs localized the protease domain necessary and sufficient for correct cleavage to the first 184 amino acids of NS3. Kinetic analysis of processing events in vitro and experiments to examine the sensitivity of processing to dilution suggested that an intramolecular cleavage between NS2A and NS2B preceded an intramolecular cleavage between NS2B and NS3. The data from these expression experiments confirm that NS3 is the viral proteinase responsible for cleavage events generating the amino termini of NS2B and NS3 and presumably for cleavages generating the termini of NS4A and NS5 as well.

Biochemical and genetic experiments using viral proteinases have defined the sequence requirements for cleavage site recognition, but have not identified residues within proteinases that interact with substrates. A biochemical assay was developed that could identify residues which were important for substrate recognition. Chimeric proteases between yellow fever and dengue 2 were constructed that allowed mapping of regions involved in substrate recognition, and site directed mutagenesis was used to modulate processing efficiency.

Expression in vitro revealed that the dengue protease domain efficiently processes the yellow fever polyprotein between NS2A and NS2B and between NS2B and NS3, but that the reciprocal construct is inactive. The dengue protease processes yellow fever cleavage sites more efficiently than dengue cleavage sites, suggesting that suboptimal cleavage efficiency may be used to increase levels of processing intermediates in vivo. By mutagenizing the putative substrate binding pocket it was possible to change the substrate specificity of the yellow fever protease; changing a minimum of three amino acids in the yellow fever protease enabled it to recognize dengue cleavage sites. This system allows identification of residues which are directly or indirectly involved with enzyme-substrate interaction, does not require a crystal structure, and can define the substrate preferences of individual members of a viral proteinase family.

Full-length cDNA clones, from which infectious RNA can be transcribed, have been developed for a number of positive strand RNA viruses, including the flavivirus type virus, yellow fever. The technology necessary to transcribe genomic RNA of dengue 2 virus was developed in order to better understand the molecular biology of the dengue subgroup. A 5' structural region clone was engineered to transcribe authentic dengue RNA that contains an additional 1 or 2 residues at the 5' end. A 3' nonstructural region clone was engineered to allow production of run off transcripts, and to allow directional ligation with the 5' structural region clone. In vitro ligation and transcription produces full-length genomic RNA which is noninfectious when transfected into mammalian tissue culture cells. Alternative methods for constructing cDNA clones and recovering live dengue virus are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temporoammonic (TA) pathway is the direct, monosynaptic projection from layer III of entorhinal cortex to the distal dendritic region of area CA1 of the hippo­ campus. Although this pathway has been implicated in various functions, such as memory encoding and retrieval, spatial navigation, generation of oscillatory activity, and control of hippocampal excitability, the details of its physiology are not well understood. In this thesis, I examine the contribution of the TA pathway to hippocampal processing. I find that, as has been previously reported, the TA pathway includes both excitatory, glutamatergic components and inhibitory, GABAergic components. Several new discoveries are reported in this thesis. I show that the TA pathway is subject to forms of short-term activity-dependent regulation, including paired-pulse and frequency­ dependent plasticity, similar to other hippocampal pathways such as the Schaffer collateral (SC) input from CA3 to CA1. The TA pathway provides a strongly excitatory input to stratum radiatum giant cells of CA1. The excitatory component of the TA pathway undergoes a long-lasting decrease in synaptic strength following low-frequency stimulation in a manner partially dependent on the activation of NMDA receptors. High­ frequency activation of the TA pathway recruits a feedforward inhibition that can prevent CA1 pyramidal cells from spiking in response to SC input; this spike-blocking effect shows that the TA pathway can act to regulate information flow through the hippocampal trisynaptic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As borne out by everyday social experience, social cognition is highly dependent on context, modulated by a host of factors that arise from the social environment in which we live. While streamlined laboratory research provides excellent experimental control, it can be limited to telling us about the capabilities of the brain under artificial conditions, rather than elucidating the processes that come into play in the real world. Consideration of the impact of ecologically valid contextual cues on social cognition will improve the generalizability of social neuroscience findings also to pathology, e.g., to psychiatric illnesses. To help bridge between laboratory research and social cognition as we experience it in the real world, this thesis investigates three themes: (1) increasing the naturalness of stimuli with richer contextual cues, (2) the potentially special contextual case of social cognition when two people interact directly, and (3) a third theme of experimental believability, which runs in parallel to the first two themes. Focusing on the first two themes, in work with two patient populations, we explore neural contributions to two topics in social cognition. First, we document a basic approach bias in rare patients with bilateral lesions of the amygdala. This finding is then related to the contextual factor of ambiguity, and further investigated together with other contextual cues in a sample of healthy individuals tested over the internet, finally yielding a hierarchical decision tree for social threat evaluation. Second, we demonstrate that neural processing of eye gaze in brain structures related to face, gaze, and social processing is differently modulated by the direct presence of another live person. This question is investigated using fMRI in people with autism and controls. Across a range of topics, we demonstrate that two themes of ecological validity — integration of naturalistic contextual cues, and social interaction — influence social cognition, that particular brain structures mediate this processing, and that it will be crucial to study interaction in order to understand disorders of social interaction such as autism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several patients of P. J. Vogel who had undergone cerebral commissurotomy for the control of intractable epilepsy were tested on a variety of tasks to measure aspects of cerebral organization concerned with lateralization in hemispheric function. From tests involving identification of shapes it was inferred that in the absence of the neocortical commissures, the left hemisphere still has access to certain types of information from the ipsilateral field. The major hemisphere can still make crude differentiations between various left-field stimuli, but is unable to specify exact stimulus properties. Most of the time the major hemisphere, having access to some ipsilateral stimuli, dominated the minor hemisphere in control of the body.

Competition for control of the body between the hemispheres is seen most clearly in tests of minor hemisphere language competency, in which it was determined that though the minor hemisphere does possess some minimal ability to express language, the major hemisphere prevented its expression much of the time. The right hemisphere was superior to the left in tests of perceptual visualization, and the two hemispheres appeared to use different strategies in attempting to solve the problems, namely, analysis for the left hemisphere and synthesis for the right hemisphere.

Analysis of the patients' verbal and performance I.Q.'s, as well as observations made throughout testing, suggest that the corpus callosum plays a critical role in activities that involve functions in which the minor hemisphere normally excels, that the motor expression of these functions may normally come through the major hemisphere by way of the corpus callosum.

Lateral specialization is thought to be an evolutionary adaptation which overcame problems of a functional antagonism between the abilities normally associated with the two hemispheres. The tests of perception suggested that this function lateralized into the mute hemisphere because of an active counteraction by language. This latter idea was confirmed by the finding that left-handers, in whom there is likely to be bilateral language centers, are greatly deficient on tests of perception.