6 resultados para Electronics engineering

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper explores the performance of sliding-window based training, termed as semi batch, using multilayer perceptron (MLP) neural network in the presence of correlated data. The sliding window training is a form of higher order instantaneous learning strategy without the need of covariance matrix, usually employed for modeling and tracking purposes. Sliding-window framework is implemented to combine the robustness of offline learning algorithms with the ability to track online the underlying process of a function. This paper adopted sliding window training with recent advances in conjugate gradient direction with application of data store management e.g. simple distance measure, angle evaluation and the novel prediction error test. The simulation results show the best convergence performance is gained by using store management techniques. © 2012 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Elementary computing operations can be arranged within molecules so that problems in chemical, biochemical, and biological situations can be addressed. Problems that are found in small and/or living spaces, where the corresponding semiconductor logic devices cannot operate conveniently, are particularly amenable to this approach. The visualization and monitoring of intracellular species is one such category. Problems in medical diagnostics and therapy form additional categories. Chemists and biologists employ chemical synthesis and molecular biology techniques to build molecular logic devices. The photochemical approach to molecular logic devices is particularly prevalent. The fluorescent photoinduced electron transfer (PET) switching principle is particularly useful for designing logic functions into small molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A design methodology to optimise the ratio of maximum oscillation frequency to cutoff frequency, f(MAX)/f(T), in 60 nm FinFETs is presented. Results show that 25 to 60% improvement in f(MAX)/f(T) at drain currents of 20-300 mu A/mu m can be achieved in a non-overlap gate-source/drain architecture. The reported work provides new insights into the design and optimisation of nanoscale FinFETs for RF applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose for the first time, an analytical model for short channel effects in nanoscale source/drain extension region engineered double gate (DG) SOI MOSFETs. The impact of (i) lateral source/drain doping gradient (d), (ii) spacer width (s), (iii) spacer to doping gradient ratio (s/d) and (iv) silicon film thickness (T-si), on short channel effects - threshold voltage (V-th) and subthreshold slope (S), on-current (I-on), off-current (I-on) and I-on/I-off is extensively analysed by using the analytical model and 2D device simulations. The results of the analytical model confirm well with simulated data over the entire range of spacer widths, doping gradients and effective channel lengths. Results show that lateral source/drain doping gradient along with spacer width can not only effectively control short channel effects, thus presenting low off-current, but can also be optimised to achieve high values of on-currents. The present work provides valuable design insights in the performance of nanoscale DG Sol devices with optimal source/drain engineering and serves as a tool to optimise important device and technological parameters for 65 nm technology node and below. (c) 2006 Elsevier Ltd. All rights reserved.