207 resultados para Diversity turnover
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Throughout Earth's history there have been temporal and spatial variations in the amount of visible and ultraviolet radiation received by ecosystems. This paper examines if temporal changes in these forms of energy receipt could have influenced the tempo and mode of plant diversity and speciation, focusing in particular upon Cenozoic time-scales. Evidence for changing patterns of plant diversity and speciation apparent in various fossil records and molecular phylogenies are considered alongside calculated changes in thermal and solar ultraviolet energy (specifically UV-B) over the past 50 Myr. We suggest that changes in thermal energy influx (amount and variability) affected the tempo of evolution through its influence upon community dynamics (e.g. population size, diversity, turnover, extinctions). It was not only the amount of thermal energy but also variability in its flux that may have influenced these processes, and ultimately the rate of diversification. We suggest that variations in UV-B would have influenced the mode and tempo of speciation through changes to genome stability during intervals of elevated UV-B. We argue, therefore, that although variability in thermal energy and UV-B fluxes through time may lead to the same end-point (changing the rate of diversification), the processes responsible are very different and both need to be considered when linking evolutionary processes to energy flux.
Resumo:
1. Little consensus has been reached as to general features of spatial variation in beta diversity, a fundamental component of species diversity. This could reflect a genuine lack of simple gradients in beta diversity, or a lack of agreement as to just what constitutes beta diversity. Unfortunately, a large number of approaches have been applied to the investigation of variation in beta diversity, which potentially makes comparisons of the findings difficult.
2. We review 24 measures of beta diversity for presence/absence data (the most frequent form of data to which such measures are applied) that have been employed in the literature, express many of them for the first time in common terms, and compare some of their basic properties.
3. Four groups of measures are distinguished, with a fundamental distinction arising between 'broad sense' measures incorporating differences in composition attributable to species richness gradients, and 'narrow sense' measures that focus on compositional differences independent of such gradients. On a number of occasions on which the former have been employed in the literature the latter may have been more appropriate, and there are many situations in which consideration of both kinds of measures would be valuable.
4. We particularly recommend (i) considering beta diversity measures in terms of matching/mismatching components (usually denoted a , b and c) and thereby identifying the contribution of different sources of variation in species composition, and (ii) the use of ternary plots to express the relationship between the values of these measures and of the components, and as a way of understanding patterns in beta diversity.
Resumo:
1. Using data on the spatial distribution of the British avifauna, we address three basic questions about the spatial structure of assemblages: (i) Is there a relationship between species richness (alpha diversity) and spatial turnover of species (beta diversity)? (ii) Do high richness locations have fewer species in common with neighbouring areas than low richness locations?, and (iii) Are any such relationships contingent on spatial scale (resolution or quadrat area), and do they reflect the operation of a particular kind of species-area relationship (SAR)?
2. For all measures of spatial turnover, we found a negative relationship with species richness. This held across all scales, with the exception of turnover measured as beta (sim).
3. Higher richness areas were found to have more species in common with neighbouring areas.
4. The logarithmic SAR fitted better than the power SAR overall, and fitted significantly better in areas with low richness and high turnover.
5. Spatial patterns of both turnover and richness vary with scale. The finest scale richness pattern (10 km) and the coarse scale richness pattern (90 km) are statistically unrelated. The same is true of the turnover patterns.
6. With coarsening scale, locations of the most species-rich quadrats move north. This observed sensitivity of richness 'hotspot' location to spatial scale has implications for conservation biology, e.g. the location of a reserve selected on the basis of maximum richness may change considerably with reserve size or scale of analysis.
7. Average turnover measured using indices declined with coarsening scale, but the average number of species gained or lost between neighbouring quadrats was essentially scale invariant at 10-13 species, despite mean richness rising from 80 to 146 species (across an 81-fold area increase). We show that this kind of scale invariance is consistent with the logarithmic SAR.
Resumo:
We examined variability in hierarchical beta diversity across ecosystems, geographical gradients, and organism groups using multivariate spatial mixed modeling analysis of two independent data sets. The larger data set comprised reported ratios of regional species richness (RSR) to local species richness (LSR) and the second data set consisted of RSR: LSR ratios derived from nested species-area relationships. There was a negative, albeit relatively weak, relationship between beta diversity and latitude. We found only relatively subtle differences in beta diversity among the realms, yet beta diversity was lower in marine systems than in terrestrial or freshwater realms. Beta diversity varied significantly among organisms' major characteristics such as body mass, trophic position, and dispersal type in the larger data set. Organisms that disperse via seeds had highest beta diversity, and passively dispersed organisms showed the lowest beta diversity. Furthermore, autotrophs had lower beta diversity than organisms higher up the food web; omnivores and carnivores had consistently higher beta diversity. This is evidence that beta diversity is simultaneously controlled by extrinsic factors related to geography and environment, and by intrinsic factors related to organism characteristics.
Resumo:
Despite its wide implications for many ecological issues, the global pattern of spatial turnover in the occurrence of species has been little studied, unlike the global pattern of species richness. Here, using a database on the breeding distributions of birds, we present the first global maps of variation in spatial turnover for an entire taxonomic class, a pattern that has to date remained largely a matter of conjecture, based on theoretical expectations and extrapolation of inconsistent patterns from different biogeographic realms. We use these maps to test four predictions from niche theory as to the form that this variation should take, namely that turnover should increase with species richness, towards lower latitudes, and with the steepness of environmental gradients and that variation in turnover is determined principally by rare (restricted) species. Contrary to prediction, we show that turnover is high both in areas of extremely low and high species richness, does not increase strongly towards the tropics, and is related both to average environmental conditions and spatial variation in those conditions. These results are closely associated with a further important and novel finding, namely that global patterns of spatial turnover are driven principally by widespread species rather than the restricted ones. This complements recent demonstrations that spatial patterns of species richness are also driven principally by widespread species, and thus provides an important contribution towards a unified model of how terrestrial biodiversity varies both within and between the Earth's major land masses.
Resumo:
Aim To examine the effect on the observed relationship betw een spatial turnover and latitude of both the measure of beta diversity used and the method of analysis.
Location The empirical analyses presented herein are for the New World.
Methods We take the spatial distributions of the owls of the New World as an exemplar data set to investigate the patterns of beta diversity across latitudes revealed by different analytical methods. To illustrate the strengths and weaknesses of alternative measures of beta diversity and different analytical approaches, we also use a simple random distribution model, focusing in particular on the influence of richness gradients and landmass geometry.
Results Our simple spatial model of turnover demonstrates that different combinations of analytical approach and measure of beta diversity can give rise to strikingly different relationships between turnover and latitude. The analyses of the bird data for the owls of the New World demonstrate that this observation extends to real data.
Conclusions For the particular assemblage considered, we present strong evidence that species richness declines at higher latitudes, and there is also some evidence that species turnover is greater nearer the equator, despite conceptual and practical difficulties involved in analysing spatial patterns of species turnover. We suggest some ways of overcoming these difficulties.
Resumo:
1. We tested the species diversity-energy hypothesis using the British bird fauna. This predicts that temperature patterns should match diversity patterns. We also tested the hypothesis that the mechanism operates directly through effects of temperature on thermoregulatory loads; this further predicts that seasonal changes in temperature cause matching changes in patterns of diversity, and that species' body mass is influential.
2. We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 x 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3. We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4. Although the species-energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5. However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6. Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral.
Resumo:
Peat bogs represent unique ecosystems that are under particular threat from fragmentation due to peat harvesting, with only 38% of the original peatland in Europe remaining intact and unaffected by peat cutting, drainage and silviculture. In this study, we have used microsatellite markers to determine levels and patterns of genetic diversity in both cut and uncut natural populations of the peat moss Polytrichum commune. Overall diversity levels suggest that there is more genetic variation present than had previously been assumed for bryophytes. Despite this, diversity values from completely cut bogs were found to be lower than those from uncut peatlands (average 0.729 versus 0.880). In addition, the genetic diversity was more highly structured in the cut populations, further suggesting that genetic drift is already affecting genetic diversity in peat bogs subjected to fragmentation.
Resumo:
Lights, camera, action! Photoswitchable nucleoside analogues containing o-, m-, or p-azobenzenes can be inserted in the catalytic core of RNA-cleaving 10-23 deoxyribozymes by replacing a nonconserved residue (see picture). Irradiation of the modified deoxyribozymes at 366 nm enhances RNA cleavage rates up to ninefold, thus achieving the rates observed for the unmodified deoxyribozyme.
Resumo:
The aim of the paper is to explore teachers’ methods of delivering an ethos of tolerance, respect
and mutual understanding in one integrated secondary school in Northern Ireland. Drawing on
interviews with teachers in the school, it is argued that most teachers make ‘critical choices’
which both reflect and reinforce a ‘culture of avoidance’, whereby politically or religiously contentious
issues are avoided rather than explored. Although teachers are well-intentioned in making
these choices, it is shown that they have the potential to create the conditions that maintain or even
harden psychological boundaries between Catholics and Protestants rather than dilute them.