49 resultados para 060100 BIOCHEMISTRY AND CELL BIOLOGY
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The proto-oncogene Ras undergoes a series of post-translational modifications at its carboxyl-terminal CAAX motif that are essential for its proper membrane localization and function. One step in this process is the cleavage of the CAAX motif by the enzyme Ras-converting enzyme 1 (RCE1). Here we show that the deubiquitinating enzyme USP17 negatively regulates the activity of RCE1. We demonstrate that USP17 expression blocks Ras membrane localization and activation, thereby inhibiting phosphorylation of the downstream kinases MEK and ERK. Furthermore, we show that this effect is caused by the loss of RCE1 catalytic activity as a result of its deubiquitination by USP17. We also show that USP17 and RCE1 co-localize at the endoplasmic reticulum and that USP17 cannot block proliferation or Ras membrane localization in RCE1 null cells. These studies demonstrate that USP17 modulates Ras processing and activation, at least in part, by regulating RCE1 activity.
The Deubiquitinating Enzyme USP17 is Essential for GTPase Subcellular localization and Cell Motility
Resumo:
Deubiquitinating enzymes are now emerging as potential therapeutic targets that control many cellular processes, but few have been demonstrated to control cell motility. Here, we show that ubiquitin-specific protease 17 (USP17) is rapidly and transiently induced in response to chemokines SDF-1/CXCL12 and IL-8/CXCL8 in both primary cells and cell lines, and that its depletion completely blocks chemokine-induced cell migration and cytoskeletal rearrangements. Using live cell imaging, we demonstrate that USP17 is required for both elongated and amoeboid motility, in addition to chemotaxis. USP17 has previously been reported to disrupt Ras localization and we now find that USP17 depletion blocks chemokine-induced subcellular relocalization of GTPases Cdc42, Rac and RhoA, which are GTPases essential for cell motility. Collectively, these results demonstrate that USP17 has a critical role in cell migration and may be a useful drug target for both inflammatory and metastatic disease.
Resumo:
Reduced galactose 1-phosphate uridylyltransferase (GAIT) activity is associated with the genetic disease type 1 galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GAIT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (11) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GAIT is required to assist greater understanding of the effects of disease-associated mutations. (C) 2011 IUBMB IUBMB Life, 63(9): 694-700, 2011
Resumo:
Type I galactosemia results from reduced galactose 1-phosphate uridylyltransferase (GALT) activity. Signs of disease include damage to the eyes, brain, liver, and ovaries. However, the exact nature and severity of the pathology depends on the mutation(s) in the patient's genes and his/her environment. Considerable enzymological and structural knowledge has been accumulated and this provides a basis to explain, at a biochemical level, impairment in the enzyme in the more than 230 disease-associated variants, which have been described. The most common variant, Q188R, occurs close to the active site and the dimer interface. The substitution probably disrupts both UDP-sugar binding and homodimer stability. Other alterations, for example K285N, occur close to the surface of the enzyme and most likely affect the folding and stability of the enzyme. There are a number of unanswered questions in the field, which require resolution. These include the possibility that the main enzymes of galactose metabolism form a supramolecular complex and the need for a high resolution crystal structure of human GALT. (C) 2011 IUBMB IUBMB Life, 63(11): 949-954, 2011
Resumo:
The sustainable control of animal parasitic nematodes requires the development of efficient functional genomics platforms to facilitate target validation and enhance anthelmintic discovery. Unfortunately, the utility of RNA interference (RNAi) for the validation of novel drug targets in nematode parasites remains problematic. Ascaris suum is an important veterinary parasite and a zoonotic pathogen. Here we show that adult A. suum is RNAi competent, and highlight the induction, spread and consistency of RNAi across multiple tissue types. This platform provides a new opportunity to undertake whole organism-, tissue- and cell-level gene function studies to enhance target validation processes for nematode parasites of veterinary/medical significance.
Resumo:
The exact functions of BRCA1 have not been fully described but it now seems apparent that it has roles in DNA damage repair, transcriptional regulation, cell cycle control and most recently in ubiquitylation. These functions of BRCA1 are most likely interdependent but this review will focus on the role of BRCA1 in relation to transcriptional regulation and in particular how this impacts upon cell cycle control. We will (i) describe the structure of BRCA1 and how it may contribute to its transcription function; (ii) describe the interaction of BRCA1 with the core transcriptional machinery (RNA polII); (iii) describe how BRCA1 may regulate transcription at an epigenetic level through chromatin modification; (iv) discuss the role of BRCA1 in modulating transcription through its association with sequence-specific transcription factors. Finally, we will discuss the possible effects of BRCA1 transcriptional regulation on downstream targets with known roles in cell cycle control.
Resumo:
Zygotes of the fucoid brown algae provide excellent models for addressing fundamental questions about zygotic symmetry breaking. Although the acquisition of polarity is tightly coordinated with the timing and orientation of the first asymmetric division-with zygotes having to pass through a G1/S-phase checkpoint before the polarization axis can be fixed -the mechanisms behind the interdependence of polarization and cell cycle progression remain unclear. In this study, we combine in vivo Ca(2+) imaging, single cell monitoring of S-phase progression and multivariate analysis of high-throughput intracellular Ca(2+) buffer loading to demonstrate that Ca(2+) signals coordinate polarization and cell cycle progression in the Fucus serratus zygote. Consistent with earlier studies on this organism, and in contrast to animal models, we observe no fast Ca(2+) wave following fertilization. Rather, we show distinct slow localized Ca(2+) elevations associated with both fertilization and S-phase progression, and we show that both S-phase and zygotic polarization are dependent on pre-S-phase Ca(2+) increases. Surprisingly, this Ca(2+) requirement cannot be explained by co-dependence on a single G1/ S-phase checkpoint, as S phase and zygotic polarization are differentially sensitive to pre-S-phase Ca(2+) elevations and can be uncoupled. Furthermore, subsequent cell cycle progression through M phase is independent of localized actin polymerization and zygotic polarization. This absence of a morphogenesis checkpoint, together with the observed Ca(2+)dependences of S phase and polarization, show that the regulation of zygotic division in the brown algae differs from that in other eukaryotic model systems, such as yeast and Drosophila.
Resumo:
Purpose: To determine whether repression of a recently isolated, X-ray-responsive gene, DIR1, using antisense oligonucleotides could affect clonogenic cell survival and repair of DNA strand breaks and have a possible role in the mechanism underlying the phenomenon of 'induced radioresistance' (IRR).
Resumo:
One of the important temporal stages of radiation action in cellular systems is the chemical phase, where oxygen fixation reactions compete with chemical repair reactions involving reducing agents such as GSH. Using the gas explosion technique it is possible to follow the kinetics of these fast (> 1 ms) reactions in intact cells. We have compared the chemical repair kinetics of the oxygen-dependent free radical precursors leading to DNA single-strand and double-strand breaks, measured using filter elution techniques, with those leading to cell killing in V79 cells. The chemical repair rates for DNA dsb (670s-1 at pH 7.2 and 380s-1 at pH 9.6) and cell killing (530s-1) were similar. This is in agreement with the important role of DNA dsb in radiation induced cell lethality. The rate for DNA ssb precursors was significantly slower (210s-1). The difference in rate between DNA ssb and dsb precursors may be explained on the basis of a dsb free radical precursor consisting of a paired radical, one radical on each strand. The instantaneous probability of one or other of these radicals being chemically repaired and not proceeding to form a dsb will be twice that of a ssb radical precursor. This agrees well with the concept of locally multiply damaged sites (LMDS) produced from clusters of ionizations in DNA (Ward 1985).
Resumo:
Chinese hamster V79 fibroblasts were irradiated in the gas explosion apparatus and the chemical repair rates of the oxygen-dependent free radical precursors of DNA double-strand breaks (dsb) and lethal lesions measured using filter elution (pH 9.6) and a clonogenic assay. Depletion of cellular GSH levels, from 4.16 fmol/cell to 0.05 fmol/cell, by treatment with buthionine sulphoximine (50 mumol dm-3; 18 h), led to sensitization as regards DNA dsb induction and cell killing. This was evident at all time settings but was particularly pronounced when the oxygen shot was given 1 ms after the irradiation pulse. A detailed analysis of the chemical repair kinetics showed that depletion of GSH led to a reduction in the first-order rate constant for dsb precursors from 385 s-1 to 144 s-1, and for lethal lesion precursors from 533 s-1 to 165 s-1. This is generally consistent with the role of GSH in the repair-fixation model of radiation damage at the critical DNA lesions. However, the reduction in chemical repair rate was not proportional to the severe thiol depletion (down to almost-equal-to 1% for GSH) and a residual repair capacity remained (almost-equal-to 30%). This was found not to be due to compartmentalization of residual GSH in the nucleus, as the repair rate for dsb precursors in isolated nuclei, washed virtually free of GSH, was identical to that found in GSH-depleted cells (144 s-1), also the OER remained substantially above unity. This suggests that other reducing agents may have a role to play in the chemical repair of oxygen-dependent damage. One possible candidate is the significant level of protein sulphydryls present in isolated nuclei.