135 resultados para Witt, Johan de, 1625-1672.
Resumo:
BACKGROUND: Prostate cancer (PCa) is a clinically and pathologically heterogeneous disease. The rapid development of sequencing technology has the potential to deliver new biomarkers with emphasis on aggressive disease and to revolutionise personalised cancer treatment. However, a prostate harbouring cancer commonly contains multiple separate tumour foci, with the potential to aggravate tumour sampling. The level of intraprostatic tumour heterogeneity remains to be determined.
OBJECTIVE: To determine the level of intraprostatic tumour heterogeneity through genome-wide, high-resolution profiling of multiple tumour samples from the same individual.
DESIGN, SETTINGS, AND PARTICIPANTS: Multiple tumour samples were obtained from four individuals following radical prostatectomy. One individual (SWE-1) contained >70% cancer cells in all tumour samples, whereas the other three (SWE-2 to SWE-4) required the use of laser capture microdissection for tumour cell enrichment. Subsequently, DNA was extracted from all tissue samples, and exome sequencing was performed. All tumour foci of SWE-1 were also profiled using a high-resolution array for the identification of copy number alterations (CNA).
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Shared somatic high-frequency single nucleotide variants (SNV) and CNAs were used to infer the level of intraprostatic tumour heterogeneity.
RESULTS AND LIMITATIONS: No high-frequency mutations, common for the three tumour samples of SWE-1, were identified. Ten randomly chosen positions were validated with Sanger sequencing in all foci, which verified the exome data. The high level of intraprostatic heterogeneity was consistent in all individuals. In total, three out of four individuals harboured tumours without an apparent common somatic denominator. Although we cannot exclude the presence of common structural rearrangements, a high-density array was used for the detection of deletions and amplifications in SWE-1, which agreed with the exome data.
CONCLUSIONS: We present evidence for the presence of somatically independent tumours within the same prostate. This finding will have implications for personalised cancer treatment and biomarker discovery.
Resumo:
Microsomal glutathione transferase-1 (MGST1) is a membrane-bound enzyme involved in the detoxification of xenobiotics and the protection of cells against oxidative stress. The proposed active form of the enzyme is a noncovalently associated homotrimer that binds one substrate glutathione molecule/trimer. In this study, this complex has been directly observed by electrospray mass spectrometry analysis of active rat liver MGST1 reconstituted in a minimum amount of detergent. The measured mass of the homotrimer is 53 kDa, allowing for the mass of three MGST molecules in complex with one glutathione molecule. Collision-induced dissociation of the trimer complex resulted in the formation of monomer and homodimer ion species. Two distinct species of homodimer were observed, one unliganded and one identified as a homodimer.glutathione complex. Activation of the enzyme by N-ethylmaleimide through modification of Cys(49) (Svensson, R., Rinaldi, R., Swedmark, S., and Morgenstern, R. (2000) Biochemistry 39, 15144-15149) was monitored by the observation of an appropriate increase in mass in both the denatured monomeric and native trimeric forms of MGST1. Together, the data correspond well with the proposed functional organization of MGST1. These results also represent the first example of direct electrospray mass spectrometry analysis of a detergent-solubilized multimeric membrane protein complex in its native state.
Resumo:
The addition of carbon dioxide to four superbase ionic liquids, [P3333][Benzim], [P3333][124Triz], [P3333][123Triz] and [P3333][Bentriz] was studied using a molecular DFT approach involving anions alone and individual ion pairs. Intermolecular bonding within the individual ion pairs is characterised by a number of weak hydrogen bonds, with the superbase anion geometrically arranged so as to maximize interactions between the heterocyclic N atoms and the cation. The pairing energies show no correlation to the observed CO2 adsorption capacity. Addition of CO2 to the anion alone clearly resulted in the formation of a covalently-bound carbamate function with the strength of binding correlated to experimental capacity. In the ion pair however the cation significantly alters the nature of the bonding such that the overall cohesive energy is reduced. Formation of a strong carbamate function occurs at the expense of weakening the interaction between anion and cation. In the more weakly absorbing ion pairs which contain [123Triz]- and [Bentriz]-, the carbamate-functionalised systems are very close in energy to adducts in which CO2 is more weakly bound, suggesting an equilibrium between the chemi- and physisorbed CO2.
Resumo:
The miscibility of monoethanolamine (MEA) in five superbase ionic liquids (ILs), namely the trihexyl-tetradecylphosphonium benzotriazolide ([P66614][Bentriz]), trihexyl-tetradecylphosphonium benzimidazolide ([P66614][Benzim]), trihexyl-tetradecylphosphonium 1,2,3-triazolide ([P66614][123Triz]), trihexyl-tetradecylphosphonium 1,2,4-triazolide ([P66614][124Triz]), and trihexyl-tetradecylphosphonium imidazolide ([P66614][Im]) was determined at 295.15 K using 1H NMR spectroscopy. The solubility of carbon dioxide (CO2) in equimolar (IL + MEA) mixtures was then studied experimentally using a gravimetric technique at 295.15 K and 0.1 MPa. The effect of MEA on the CO2 capture ability of these ILs was investigated together with the viscosity of these systems in the presence or absence of CO2 to evaluate their practical application in CO2 capture processes. The effect of the presence of MEA on the rate of CO2 uptake was also studied. The study showed that the MEA can enhance CO2 absorption over the ideal values in the case of [P66614][123Triz] and [P66614][Bentriz] while in the other systems the mixtures behave ideally. A comparison of the effect of MEA addition with the addition of water to these superbase ILs showed that similar trends were observed in each case for the individual ILs studied.
Resumo:
Molecular characterization of genome-wide association study (GWAS) loci can uncover key genes and biological mechanisms underpinning complex traits and diseases. Here we present deep, high-throughput characterization of gene regulatory mechanisms underlying prostate cancer risk loci. Our methodology integrates data from 295 prostate cancer chromatin immunoprecipitation and sequencing experiments with genotype and gene expression data from 602 prostate tumor samples. The analysis identifies new gene regulatory mechanisms affected by risk locus SNPs, including widespread disruption of ternary androgen receptor (AR)-FOXA1 and AR-HOXB13 complexes and competitive binding mechanisms. We identify 57 expression quantitative trait loci at 35 risk loci, which we validate through analysis of allele-specific expression. We further validate predicted regulatory SNPs and target genes in prostate cancer cell line models. Finally, our integrated analysis can be accessed through an interactive visualization tool. This analysis elucidates how genome sequence variation affects disease predisposition via gene regulatory mechanisms and identifies relevant genes for downstream biomarker and drug development.
Resumo:
Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide were determined as a function of the alkyl chain length on the cation from 1-propyl- to 1-hexyl- from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally the speed of sound, density and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e. relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.
Resumo:
This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in the different ILs. The viscosity of the ILs and the calculated molar volume and free volume is also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas.
Resumo:
In this study we investigated the influence of five different cations on the physical-chemical properties of protic ionic liquids (PILs) based on bis(trifluoromethanesulfonyl)imide (TFSI-). We showed that the viscosities, ionic conductivities, densities and thermal properties of these PIL are strongly affected by the structure of the protic cation. Furthermore, the influence of the cation structure on the lithium coordination was investigated by Raman spectroscopy for all investigated PIL-based electrolytes for lithium-ion batteries (LIBs). This investigation clearly demonstrates, that the lithium average coordination number in PIL-based electrolytes is strongly affected by (ring) size and the number of protons on the cations structure and, more importantly, it might be significantly lower (more than 60 of that of electrolytes containing aprotic ionic liquids (AILs). Electrochemical performances of these PILs-based electrolytes were then also investigated to dress some conclusion on their applicability for LIB.
Resumo:
In this paper the temperature and pressure induced paramagnetic switching of cobalt (II) complex in binary mixture of phosphonium based ionic liquid [P6,6,6,14]SCN and [Co(NCS)2], is reported. This arises from a structural change in the coordination of the cobalt (II) center from tetrahedral [Co(NCS)4]2- to octahedral [Co(NCS)6]4- when mobile thiocyanate ions are added. These properties are reflected in the abrupt change of conductivity behavior of the magnetic ionic liquid. Therefore, as demonstrated herein the reversible switching in coordination of cobalt from tetrahedral to octahedral can be easily monitored at ambient as well as elevated pressure by tracking the dc-conductivity changes.
Resumo:
Biogas from anaerobic digestion of sewage sludge is a renewable resource with high energy content, which is formed mainly of CH4 (40-75 vol.%) and CO2 (15-60 vol.%) Other components such as water (H2O, 5-10 vol.%) and trace amounts of hydrogen sulfide and siloxanes can also be present. A CH4-rich stream can be produced by removing the CO2 and other impurities so that the upgraded bio-methane can be injected into the natural gas grid or used as a vehicle fuel. The main objective of this paper is to develop a new modeling methodology to assess the technical and economic performance of biogas upgrading processes using ionic liquids which physically absorb CO2. Three different ionic liquids, namely the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-hexyl-3-methylimidazoliumbis[(trifluoromethyl)sulfonyl]imide and trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]imide, are considered for CO2 capture in a pressure-swing regenerative absorption process. The simulation software Aspen Plus and Aspen Process Economic Analyzer is used to account for mass and energy balances as well as equipment cost. In all cases, the biogas upgrading plant consists of a multistage compressor for biogas compression, a packed absorption column for CO2 absorption, a flash evaporator for solvent regeneration, a centrifugal pump for solvent recirculation, a pre-absorber solvent cooler and a gas turbine for electricity recovery. The evaluated processes are compared in terms of energy efficiency, capital investment and bio-methane production costs. The overall plant efficiency ranges from 71-86 % whereas the bio-methane production cost ranges from £6.26-7.76 per GJ (LHV). A sensitivity analysis is also performed to determine how several technical and economic parameters affect the bio-methane production costs. The results of this study show that the simulation methodology developed can predict plant efficiencies and production costs of large scale CO2 capture processes using ionic liquids without having to rely on gas solubility experimental data.