178 resultados para Homozygosity mapping
Resumo:
This paper uses the analytical potential of Geographical Information Systems (GIS) to explore processes of map production and circulation in early-seventeenth century Ireland. The paper focuses on a group of historic maps, attributed to Josias Bodley, which were commissioned in 1609 by the English Crown to assist in the Plantation of Ulster. Through GIS and digitizing map-features, and in particular by quantifying map-distortion, it is possible to examine how these maps were made, and by whom. Statistical analyses of spatial data derived from the GIS are shown to provide a methodological basis for ‘excavating’ historical geographies of Plantation map-making. These techniques, when combined with contemporary written sources, reveal further insight on the ‘cartographic encounters’ taking place between surveyors and map-makers working in Ireland in the early 1600s, opening up the ‘mapping worlds’ which linked Ireland and Britain through the networks and embodied practices of Bodley and his map-makers.
Resumo:
Background: Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take >2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping.
Results: cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance.
Conclusion: Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.
Resumo:
The position-dependent oxygen vacancy dynamics induced by a biased scanning probe microscopy tip in Samarium doped ceria thin films grown on MgO (100) substrates is investigated. The granularity of the samples gives rise to spatially dependent local electrochemical activity, as explored by electrochemical strain microscopy. The kinetics of the oxygen vacancy relaxation process is investigated separately for grain boundaries and grains. Higher oxygen vacancy concentration variation and slower diffusion are observed in the grain boundary regions as compared to the grains.
Resumo:
Runs of homozygosity (ROH), regions of the genome containing many consecutive homozygous SNPs, may represent two copies of a haplotype inherited from a common ancestor. A rare variant on this haplotype could thus be present in a homozygous and potentially recessive state. To detect rare risk variants for schizophrenia, we performed an ROH analysis in a homogeneous Irish genome wide association study (GWAS) dataset consisting of 1606 cases and 1794 controls. There was no genome-wide excess of ROH in cases compared to controls (p=0.7986). No consensus ROH at individual loci showed association with schizophrenia after genome-wide correction.
Resumo:
Mineral exploration programmes around the world use data from remote sensing, geophysics and direct sampling. On a regional scale, the combination of airborne geophysics and ground-based geochemical sampling can aid geological mapping and economic minerals exploration. The fact that airborne geophysical and traditional soil-sampling data are generated at different spatial resolutions means that they are not immediately comparable due to their different sampling density. Several geostatistical techniques, including indicator cokriging and collocated cokriging, can be used to integrate different types of data into a geostatistical model. With increasing numbers of variables the inference of the cross-covariance model required for cokriging can be demanding in terms of effort and computational time. In this paper a Gaussian-based Bayesian updating approach is applied to integrate airborne radiometric data and ground-sampled geochemical soil data to maximise information generated from the soil survey, to enable more accurate geological interpretation for the exploration and development of natural resources. The Bayesian updating technique decomposes the collocated estimate into a production of two models: prior and likelihood models. The prior model is built from primary information and the likelihood model is built from secondary information. The prior model is then updated with the likelihood model to build the final model. The approach allows multiple secondary variables to be simultaneously integrated into the mapping of the primary variable. The Bayesian updating approach is demonstrated using a case study from Northern Ireland where the history of mineral prospecting for precious and base metals dates from the 18th century. Vein-hosted, strata-bound and volcanogenic occurrences of mineralisation are found. The geostatistical technique was used to improve the resolution of soil geochemistry, collected one sample per 2 km2, by integrating more closely measured airborne geophysical data from the GSNI Tellus Survey, measured over a footprint of 65 x 200 m. The directly measured geochemistry data were considered as primary data in the Bayesian approach and the airborne radiometric data were used as secondary data. The approach produced more detailed updated maps and in particular maximized information on mapped estimates of zinc, copper and lead. Greater delineation of an elongated northwest/southeast trending zone in the updated maps strengthened the potential to investigate stratabound base metal deposits.
Resumo:
Background Sentinel lymph node biopsy is a recently developed, minimally invasive technique for staging the axilla in patients with breast cancer. It has been suggested that this technique will avoid the morbidity associated with more extensive axillary dissection. A wide range of different methods and materials has been employed for lymphatic mapping, but there has been little consensus on the most reliable and reproducible technique.
Methods This is a comprehensive review of all published literature on sentinel node biopsy in breast cancer, using the Medline and Embase databases and cross-referencing of major articles on the subject.
Results and conclusion Sentinel node biopsy is a valid technique in breast cancer management, providing valuable axillary staging information. The optimal technique of lymphatic mapping utilizes a combination of vital blue dye and radiolabelled colloid. However, there remain controversial issues which require to be resolved before sentinel node biopsy becomes a widely accepted part of breast cancer care.
Resumo:
This paper contributes a new approach for developing UML software designs from Natural Language (NL), making use of a meta-domain oriented ontology, well established software design principles and Natural Language Processing (NLP) tools. In the approach described here, banks of grammatical rules are used to assign event flows from essential use cases. A domain specific ontology is also constructed, permitting semantic mapping between the NL input and the modeled domain. Rules based on the widely-used General Responsibility Assignment Software Principles (GRASP) are then applied to derive behavioral models.
Resumo:
Mapped topographic features are important for understanding processes that sculpt the Earth’s surface. This paper presents maps that are the primary product of an exercise that brought together 27 researchers with an interest in landform mapping wherein the efficacy and causes of variation in mapping were tested using novel synthetic DEMs containing drumlins. The variation between interpreters (e.g. mapping philosophy, experience) and across the study region (e.g. woodland prevalence) opens these factors up to assessment. A priori known answers in the synthetics increase the number and strength of conclusions that may be drawn with respect to a traditional comparative study. Initial results suggest that overall detection rates are relatively low (34–40%), but reliability of mapping is higher (72–86%). The maps form a reference dataset.