144 resultados para Incomplete gamma
Resumo:
Calculations of gamma spectra for positron annihilation for a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The contribution to the ?-spectra from individual molecular orbitals is obtained from electron momentum distributions calculated using the density functional theory (DFT) based B3LYP/TZVP model. For positrons thermalised to room temperature, the calculation, in its simplest form, effectively treats the positron as a plane wave and gives positron annihilation ?-spectra linewidths that are broader (30-40%) than experiment, although the main chemical trends are reproduced. The main physical reason for this is the neglect of positron repulsion from the nuclei. We show that this effect can be incorporated through momentum-dependent correction factors, determined from positron-atom calculations, e.g., many-body perturbation theory. Inclusion of these factors in the calculation gives linewidths that are in improved agreement with experiment.
Resumo:
The presenilins (PSs) were identified as causative genes in cases of early-onset familial Alzheimer's disease (AD) and current evidence indicates that PSs are part of the gamma-secretase complex responsible for proteolytic processing of type I membrane proteins. p75NTR, a common neurotrophin receptor, was shown to be subject to gamma-secretase processing. However, it is not clear if the p75NTR downstream signal is altered in response to gamma-secretase cleavage, and further there is a possibility that AD-related PS mutations may affect this cleavage, resulting in pathogenic alterations in signal transduction. In this study, we confirmed that p75NTR downstream signalling is altered by PS2 mutation or gamma-secretase inhibition in SHSY-5Y cells. The activity of the small GTPase RhoA is strongly affected by these treatments. This study demonstrates that gamma-secretase and PS2 play an important role in regulating neurotrophin signal transduction and either mutation of PS2 or inhibition of gamma-secretase disturbs this function.
Resumo:
Herein we investigate the use of CuO-ZnO-Al2O3 (CZA) with different solid acid catalysts (NH(4)ZSM-5. HZSM-5 or gamma-Al2O3) for the production of dimethyl ether from syngas. It was found that of the solid acids, which are necessary for the dehydration function of the admixed system, the CZA/HZSM-5 bifunctional catalyst with a 0.25 acid fraction showed high stability over a continuous period of 212 h.
As this particular system was observed to loose around 16.2% of its initial activity over this operating period this study further investigates the CZA/HZSM-5 bifunctional catalyst in terms of its deactivation mechanisms. TPO investigations showed that the catalyst deactivation was related to coke deposited on the metallic sites: interface between the metallic sites and the support near the metal-support: and on the support itself.
Resumo:
Aging is associated with changes in lymphocyte subsets and unexplained HLA-DR upregulation on T-lymphocytes. We further investigated this activation, by measuring early (CD69), middle (CD25), and late (HLA-DR) T-lymphocyte activation markers on CD3+ lymphocytes, across subjects (20-100 years) together with serum tumor necrosis factor (TNF-alpha), interferon-gamma (IFN-gamma), and soluble interleukin-2 receptor (sIL-2R). HLA-DR was present as a CD3+ HLA-DR+ subset that constituted 8% of total lymphocytes, increased twofold with age and included CD4+, CD8+, and CD45RA+ phenotypes. HLA-DR was also expressed on a CD8+ CD57+ subset. The CD3+ CD25+ subset constituted 13% of lymphocytes, fell with age but was weakly associated with the CD3+ HLA-DR+ subset especially in older subjects. A small 3-5% CD3+ CD69+ subsets showed no age effect. Serum sIL-2R, TNF-alpha, but not IFN-gamma, were associated with CD3+ HLA-DR+ lymphocytes, TNF-alpha with CD8+ CD57+ count and sIL-2R and IFN-gamma with the CD3+ CD25+/CD3+ CD4+ ratio. The study confirms age-related upregulation of HLA-DR on CD3+ lymphocytes, shows some evidence for associated upregulation of CD25 on CD3+ cells in older subjects, and links serum TNF-alpha, IFN-gamma, and sIL2-R to T-lymphocyte activation.
Resumo:
The use of radiation-inducible promoters to drive transgene expression offers the possibility of temporal and spatial regulation of gene activation. This study assessed the potential of one such promoter element, p21(WAF1/CIP1) (WAF1), to drive expression of the noradrenaline transporter (NAT) gene, which conveys sensitivity to radioiodinated meta-iodobenzylguanidine (MIBG). An expression vector containing NAT under the control of the radiation-inducible WAF1 promoter (pWAF/NAT) was produced. The non-NAT expressing cell lines UVW (glioma) and HCT116 (colorectal cancer) were transfected with this construct to assess radiation-controlled WAF1 activation of the NAT gene. Transfection of UVW and HCT cells with pWAF/NAT conferred upon them the ability to accumulate [(131)I]MIBG, which led to increased sensitivity to the radiopharmaceutical. Pretreatment of transfected cells with ? radiation or the radiopharmaceuticals [(123)I]MIBG or [(131)I]MIBG induced dose- and time-dependent increases in subsequent [(131)I]MIBG uptake and led to enhanced efficacy of [(131)I]MIBG-mediated cell kill. Gene therapy using WAF1-driven expression of NAT has the potential to expand the use of this therapeutic modality to tumors that lack a radio-targetable feature.
Resumo:
We carry out the first multi-dimensional radiative transfer calculations to simultaneously compute synthetic spectra and light curves for models of supernovae driven by fast bipolar outflows. These allow us to make self-consistent predictions for the orientation dependence of both color evolution and spectral features. We compare models with different degrees of asphericity and metallicity and find significant observable consequences of both. In aspherical models, we find spectral and light curve features that vary systematically with observer orientation. In particular, we find that the early-phase light curves are brighter and bluer when viewed close to the polar axis but that the peak flux is highest for equatorial (off-axis) inclinations. Spectral line features also depend systematically on observer orientation, including the velocity of the Si II 6355 Å line. Consequently, our models predict a correlation between line velocity and color that could assist the identification of supernovae associated with off-axis jet-driven explosions. The amplitude and range of this correlation depends on the degree of asphericity, the metallicity, and the epoch of observation but we find that it is always present and acts in the same direction. © 2012. The American Astronomical Society. All rights reserved..
Resumo:
Catalysts currently employed for the polymerization of ethylene have previously been found to deactivate in the presence of oxygen. It is, therefore, important that oxygen is removed from the ethylene feedstock prior to the polymerization. The Ag/gamma-Al2O3 catalyst exhibits excellent activity and selectivity toward oxygen reduction with hydrogen in the presence of ethylene. TAP vacuum pulse experiments have been utilised to understand the catalytic behaviour of the Ag/gamma-Al2O3 catalyst. TAP multi-pulse experiments have determined the types of active sites that are found on the Ag/gamma-Al2O3 catalyst, and the intrinsic activity of these sites. The lifetime of the reactive adsorbed oxygen intermediate has also been determined through TAP consecutive pulse experiments. Multi-pulse and consecutive pulse data have been combined with ethylene adsorption/desorption rate constants to provide an overview of the Ag/gamma-Al2O3 catalyst system.
Resumo:
The phragmoplast coordinates cytokinesis in plants [1]. It directs vesicles to the midzone, the site where they coalesce to form the new cell plate. Failure in phragmoplast function results in aborted or incomplete cytokinesis leading to embryo lethality, morphological defects, or multinucleate cells [2, 3]. The asymmetry of vesicular traffic is regulated by microtubules [1, 4, 5, 6], and the current model suggests that this asymmetry is established and maintained through treadmilling of parallel microtubules. However, we have analyzed the behavior of microtubules in the phragmoplast using live-cell imaging coupled with mathematical modeling and dynamic simulations and report that microtubules initiate randomly in the phragmoplast and that the majority exhibit dynamic instability with higher turnover rates nearer to the midzone. The directional transport of vesicles is possible because the majority of the microtubules polymerize toward the midzone. Here, we propose the first inclusive model where microtubule dynamics and phragmoplast asymmetry are consistent with the localization and activity of proteins known to regulate microtubule assembly and disassembly.
Resumo:
A controlled study was undertaken to assess the effect of gamma irradiation on post-traumatic intraocular cellular proliferation. A standard perforating injury in the posterior segment of the rabbit eye was used to induce intraocular cellular proliferation and vitreo-retinal membrane formation. The site of injury was irradiated with an ophthalmic Cobalt60 applicator which provided a continuous source of gamma rays. Non-irradiated eyes developed traction retinal detachments associated with post-traumatic vitreo-retinal membranes. Irradiated eyes developed attenuated membranes or atrophic retinal scars, with the retina remaining attached. The membranes in non-irradiated eyes were highly cellular with abundant collagen, while irradiated membranes had fewer cells within a sparse collagen matrix. The episcleral fibroblasts, on autoradiographic studies appeared to be the main source of the cells that formed the proliferating tissue in both non-irradiated and irradiated eyes. In irradiated eyes both the inflammatory response and division of fibroblasts were delayed and reduced.
Resumo:
This work investigates the end-to-end performance of randomized distributed space-time codes with complex Gaussian distribution, when employed in a wireless relay network. The relaying nodes are assumed to adopt a decode-and-forward strategy and transmissions are affected by small and large scale fading phenomena. Extremely tight, analytical approximations of the end-to-end symbol error probability and of the end-to-end outage probability are derived and successfully validated through Monte-Carlo simulation. For the high signal-to-noise ratio regime, a simple, closed-form expression for the symbol error probability is further provided.
Resumo:
Instead of highly symmetrical T-symmetry cages common in self-assembly, the p-NMe2-substituted triphosphine CH3C{CH2P(4-C6H4NMe2)(3) gives open, polar C-3 symmetry cages [Ag-6(triphos)(4)X-3](3+) which lack one of the expected face-capping anions; despite its subtlety this difference occurs selectively in solution and two examples have been crystallographically characterised.
Resumo:
A novel design for a compact gamma-ray spectrometer is presented. The proposed system allows for spectroscopy of high-flux multi-MeV gamma-ray beams with MeV energy resolution in a compact design. In its basic configuration, the spectrometer exploits conversion of gamma-rays into electrons via Compton scattering in a low-Z material. The scattered electron population is then spectrally resolved using a magnetic spectrometer. The detector is shown to be effective for gamma-ray energies between 3 and 20 MeV. The main properties of the spectrometer are confirmed by Monte Carlo simulations.