466 resultados para Apoptosis . Autophagy . Diabetic retinopathy .


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine in Type 1 diabetes patients if levels of pigment epithelium-derived factor (PEDF), an anti-angiogenic, anti-inflammatory and antioxidant factor, are increased in individuals with complications and positively related to vascular and renal dysfunction, body mass index, glycated haemoglobin, lipids, inflammation and oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis: Matrix metalloproteinases (MMPs) and their natural inhibitors, tissue inhibitor of metalloproteinases (TIMPs), regulate important biological processes including the homeostasis of the extracellular matrix, proteolysis of cell surface proteins, proteinase zymogen activation, angiogenesis and inflammation. Studies have shown that their balance is altered in retinal microvascular tissues in diabetes. Since LDLs modified by oxidation/glycation are implicated in the pathogenesis of diabetic vascular complications, we examined the effects of modified LDL on the gene expression and protein production of MMPs and TIMPs in retinal pericytes. Methods: Quiescent human retinal pericytes were exposed to native LDL (N-LDL), glycated LDL (G-LDL) and heavily oxidised and glycated LDL (HOG-LDL) for 24 h. We studied the expression of the genes encoding MMPs and TIMPs mRNAs by analysis of microarray data and quantitative PCR, and protein levels by immunoblotting and ELISA. Results: Microarray analysis showed that MMP1, MMP2, MMP11, MMP14 and MMP25 and TIMP1, TIMP2, TIMP3 and TIMP4 were expressed in pericytes. Of these, only TIMP3 mRNA showed altered regulation, being expressed at significantly lower levels in response to HOG- vs N-LDL. Quantitative PCR and immunoblotting of cell/matrix proteins confirmed the reduction in TIMP3 mRNA and protein in response to HOG-LDL. In contrast to cellular TIMP3 protein, analysis of secreted TIMP1, TIMP2, MMP1 and collagenase activity indicated no changes in their production in response to modified LDL. Combined treatment with N- and HOG-LDL restored TIMP3 mRNA expression to a level comparable with that after N-LDL alone. Conclusions/interpretation: Among the genes encoding for MMPs and TIMPs expressed in retinal pericytes, TIMP3 is uniquely regulated by HOG-LDL. Reduced TIMP3 expression might contribute to microvascular abnormalities in diabetic retinopathy. © 2007 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the consequences of diabetes and obesity, diseases that have become epidemic in our society, particularly in the past 20 years. Specifically, it summarizes current knowledge about some of the risk factors and mechanisms for the vascular complications of diabetes. These complications can be broadly divided into microvascular disease, such as diabetic retinopathy and diabetic nephropathy, and macrovascular disease, such as accelerated atherosclerosis, and they are the main cause for morbidity and premature mortality among diabetic patients. The roles of hyperglycemia, dyslipidemia and dyslipoproteinemia, oxidative stress, and endothelial dysfunction will be considered. Finally, the "treatment gap" will be addressed. This gap refers to our failure to achieve currently accepted goals to reduce established risk factors for complications in the clinical management of diabetic patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modified (oxidized and/or glycated) low-density lipoproteins (LDLs) have been implicated in retinal pericyte loss, one of the major pathologic features of early-stage diabetic retinopathy. To delineate underlying molecular mechanisms, the present study was designed to explore the global effects of modified LDL on pericyte gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the associations of apolipoprotein C-III (apoCIII) protein and apoCIII gene variation with microvascular disease complications in Type 1 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the role of modified low-density lipoproteins (LDL) in the pathogenesis of diabetic retinopathy, we studied the cytotoxicity of normal and mildly modified human LDL to bovine retinal capillary endothelial cells and pericytes in vitro. Pooled LDL was incubated (in phosphate-buffered saline-EDTA, 3 days, 37 degrees C) under 1) nitrogen with additional chelating agents and 2) air, to prepare normal and minimally oxidized LDL, respectively. Similar conditions, but with the addition of 50 mM D-glucose, were used to prepare glycated and glycoxidized LDL. None of the LDL preparations was recognized by the macrophage scavenger receptor, confirming limited modification. Retinal capillary endothelial cells and pericytes were grown to confluence and then exposed for 2 or 3 days to serum-free medium (1% albumin) supplemented with normal or modified LDL (100 mg/l) or to serum-free medium alone. Cytotoxicity was assessed by cell counting (live and total cells) and by cell protein determination. Compared with normal LDL, modified LDL were cytotoxic to both cell types at both time points, causing highly significant decreases in live and total cell counts (P <0.001) (analysis of variance). Reductions in cell protein also were significant for pericytes at day 3 (P = 0.016) and of borderline significance for endothelial cells at day 2 (P = 0.05) and day 3 (P = 0.063). Cytotoxicity increased as follows: normal <glycated <or = minimally oxidized <glycoxidized LDL. We conclude that, in diabetes, mild modification of LDL resulting from separate or combined processes of glycation and oxidation may contribute to chronic retinal capillary injury and thus to the development of diabetic retinopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycation, oxidation, and browning of proteins have all been implicated in the development of diabetic complications. We measured the initial Amadori adduct, fructoselysine (FL); two Maillard products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine; and fluorescence (excitation = 328 nm, emission = 378 nm) in skin collagen from 39 type 1 diabetic patients (aged 41.5 +/- 15.3 [17-73] yr; duration of diabetes 17.9 +/- 11.5 [0-46] yr, [mean +/- SD, range]). The measurements were related to the presence of background (n = 9) or proliferative (n = 16) retinopathy; early nephropathy (24-h albumin excretion rate [AER24] > or = 20 micrograms/min; n = 9); and limited joint mobility (LJM; n = 20). FL, CML, pentosidine, and fluorescence increased progressively across diabetic retinopathy (P <0.05, P <0.001, P <0.05, P <0.01, respectively). FL, CML, pentosidine, and fluorescence were also elevated in patients with early nephropathy (P <0.05, P <0.001, P <0.01, P <0.01, respectively). There was no association with LJM. Controlling for age, sex, and duration of diabetes using logistic regression, FL and CML were independently associated with retinopathy (FL odds ratio (OR) = 1.06, 95% confidence interval (CI) = 1.01-1.12, P <0.05; CML OR = 6.77, 95% CI = 1.33-34.56, P <0.05) and with early nephropathy (FL OR = 1.05, 95% CI = 1.01-1.10, P <0.05; CML OR = 13.44, 95% CI = 2.00-93.30, P <0.01). The associations between fluorescence and retinopathy and between pentosidine and nephropathy approached significance (P = 0.05). These data show that FL and Maillard products in skin correlate with functional abnormalities in other tissues and suggest that protein glycation and oxidation (glycoxidation) may be implicated in the development of diabetic retinopathy and early nephropathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>BACKGROUND: There have been few histological or ultrastructural studies of the outer retina and choriocapillaris following panretinal photocoagulation therapy. This investigation examines the long-term morphological effects of panretinal photocoagulation in two patients with type II diabetes who had received laser treatment more than 6 months prior to death.</p><p>METHODS: Regions of retina and choroid from each patient were fixed in 2.5% glutaraldehyde, dissected out and examined using light microscopy and scanning and transmission electron microscopy.</p><p>RESULTS: After removing the neural retina, scanning electron microscopy of non-photocoagulated areas of the eye cups revealed normal cobblestone-like retinal pigment epithelial (RPE) cells. Regions with laser scars showed little RPE infiltration into the scar area, although large rounded cells often appeared in isolation within these areas. Sections of the retina and choroid in burn regions showed a complete absence of the outer nuclear layer and photoreceptor cells, with the inner retinal layers lying in close apposition to Bruch's membrane. Non-photocoagulated regions of the retina and choroid appeared normal in terms of both cell number and cell distribution. The RPE layer was absent within burn scars but many RPE-like cells appeared markedly hypertrophic at the edges of these regions. Bruch's membrane always remained intact, although the underlying choriocapillaris was clearly disrupted at the point of photocoagulation burns, appearing largely fibrosed and non-perfused. Occasional choroidal capillaries occurring in this region were typically small in profile and had plump non-fenestrated endothelium.</p><p>CONCLUSIONS: This study outlines retinal and choroidal cell responses to panretinal photocoagulation in diabetic patients and demonstrates an apparent reduction in the capacity of these tissues to repair laser damage.</p>

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperglycemia may contribute directly to pericyte loss and capillary leakage in early diabetic retinopathy. To elucidate relative contributions of glycation, glycoxidation, sugar autoxidation, osmotic stress and metabolic effects in glucose-mediated capillary damage, we tested the effects of D-glucose, L-glucose, mannitol and the potentially protective effects of aminoguanidine on cultured bovine retinal capillary pericytes and endothelial cells. Media (containing 5 mM D-glucose) were supplemented to increase the concentration of each sugar by 5, 10, or 20 mM. Subconfluent pericytes and endothelial cells were exposed to the supplemented media in the presence or absence of aminoguanidine (1 nM-100 µM) for three days. Cell counts, viability and protein were determined. For both cell types, all three sugars produced concentration-dependent decreases in cell counts and protein content (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperglycemia plays a pivotal role in the development and progression of vascular complications, which are the major sources of morbidity and mortality in diabetes. Furthermore, these vascular complications often persist and progress despite improved glucose control, possibly as a result of prior episodes of hyperglycemia. Epigenetic modifications mediated by histone methyltransferases are associated with gene-activating events that promote enhanced expression of key proinflammatory molecules implicated in vascular injury. In this study, we investigated genetic polymorphisms of the SETD7, SUV39H1, and SUV39H2 methyltransferases as predictors of risk for micro- and macrovascular complications in type 1 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage function is not restricted to the innate and adaptive immune responses, but also includes host defence, wound healing, angiogenesis and homeostatic processes. Within the spectrum of macrophage activation there are two extremes: M1 classically activated macrophages which have a pro-inflammatory phenotype, and M2 alternatively activated macrophages which are pro-angiogenic and anti-inflammatory. An important property of macrophages is their plasticity to switch from one phenotype to the other and they can be defined in their polarisation state at any point between the two extremes. In order to determine what stage of activation macrophages are in, it is essential to profile various phenotypic markers for their identification. This review describes the angiogenic role for myeloid cells: circulating monocytes, Tie-2 expressing monocytes (TEMs), myeloid-derived suppressor cells (MDSCs), tumour associated macrophages (TAMs), and neutrophils. Each cell type is discussed by phenotype, roles within angiogenesis and possible targets as a cell therapy. In addition, we also refer to our own research on myeloid angiogenic cells (MACs), outlining their ability to induce angiogenesis and their similarities to alternatively activated M2 macrophages. MACs significantly contribute to vascular repair through paracrine mechanisms as they lack the capacity to differentiate into endothelial cells. Since MACs also retain plasticity, phenotypic changes can occur according to disease states and the surrounding microenvironment. This pro-angiogenic potential of MACs could be harnessed as a novel cellular therapy for the treatment of ischaemic diseases, such as diabetic retinopathy, hind limb ischaemia and myocardial infarction; however, caution needs to be taken when MACs are delivered into an inflammatory milieu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis<br/>The receptor for AGEs (RAGE) is linked to proinflammatory pathology in a range of tissues. The objective of this study was to assess the potential modulatory role of RAGE in diabetic retinopathy.<br/>Methods<br/>Diabetes was induced in wild-type (WT) and Rage âˆ/∠mice (also known as Ager âˆ/∠mice) using streptozotocin while non-diabetic control mice received saline. For all groups, blood glucose, HbA1c and retinal levels of methylglyoxal (MG) were evaluated up to 24 weeks post diabetes induction. After mice were killed, retinal glia and microglial activation, vasopermeability, leucostasis and degenerative microvasculature changes were determined. <br/><br/>Results<br/>Retinal expression of RAGE in WT diabetic mice was increased after 12 weeks (pâ&lt;â0.01) but not after 24 weeks. Rage âˆ/∠mice showed comparable diabetes but accumulated less MG and this corresponded to enhanced activity of the MG-detoxifying enzyme glyoxalase I in their retina when compared with WT mice. Diabetic Rage âˆ/∠mice showed significantly less vasopermeability, leucostasis and microglial activation (pâ&lt;â0.05â0.001). Rage âˆ/∠mice were also protected against diabetes-related retinal acellular capillary formation (pâ&lt;â0.001) but not against pericyte loss. <br/><br/>Conclusions/interpretation Rage âˆ/∠in diabetic mice is protective against many retinopathic lesions, especially those related to innate immune responses. Inhibition of RAGE could be a therapeutic option to prevent diabetic retinopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months' streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the molecular and functional expression of TRPV4 channels in retinal microvascular endothelial cells. These changes may contribute to diabetes induced endothelial dysfunction and retinopathy.</p>