158 resultados para vector-borne diseases
Resumo:
Functional genomics have not been reported for Opisthorchis viverrini or the related fish-borne fluke, Clonorchis sinensis. Here we describe the introduction by square wave electroporation of Cy3-labeled small RNA into adult O. viverrini worms. Adult flukes were subjected to square wave electroporation employing a single pulse for 20 ms of 125V in the presence of 50 µg/ml of Cy3-siRNA. The parasites tolerated this manipulation and, at 24 and 48 h after electroporation, fluorescence from the Cy3-siRNA was evident throughout the parenchyma of the worms, with strong fluorescence evident in the guts and reproductive organs of the adult worms. Second, other worms were treated using the same electroporation settings with double stranded RNA targeting an endogenous papain-like cysteine protease, cathepsin B. This manipulation resulted in a significant reduction in specific mRNA levels encoding cathepsin B, and a significant reduction in cathepsin B activity against the diagnostic peptide, Z-Arg-Arg-AMC. This appears to be the first report of introduction of reporter genes into O. viverrini and the first report of experimental RNA interference (RNAi) in this fluke. The findings indicated the presence of an intact RNAi pathway in these parasites which, in turn, provides an opportunity to probe gene functions in this neglected tropical disease pathogen.
Resumo:
Zoonotic infections are among the most common on earth and are responsible for >60 per cent of all human infectious diseases. Some of the most important and well-known human zoonoses are caused by worm or helminth parasites, including species of nematodes (trichinellosis), cestodes (cysticercosis, echinococcosis) and trematodes (schistosomiasis). However, along with social, epidemiological and environmental changes, together with improvements in our ability to diagnose helminth infections, several neglected parasite species are now fast-becoming recognized as important zoonotic diseases of humans, e.g. anasakiasis, several fish-borne trematodiasis and fasciolosis. In the present review, we discuss the current disease status of these primary helminth zoonotic infections with particular emphasis on their diagnosis and control. Advances in molecular biology, proteomics and the release of helminth genome-sequencing project data are revolutionizing parasitology research. The use of these powerful experimental approaches, and their potential benefits to helminth biology are also discussed in relation to the future control of helminth infections of animals and humans.
Resumo:
A bit-level systolic array for computing matrix x vector products is described. The operation is carried out on bit parallel input data words and the basic circuit takes the form of a 1-bit slice. Several bit-slice components must be connected together to form the final result, and authors outline two different ways in which this can be done. The basic array also has considerable potential as a stand-alone device, and its use in computing the Walsh-Hadamard transform and discrete Fourier transform operations is briefly discussed.
Resumo:
A new method is proposed which reduces the size of the memory needed to implement multirate vector quantizers. Investigations have shown that the performance of the coders implemented using this approach is comparable to that obtained from standard systems. The proposed method can therefore be used to reduce the hardware required to implement real-time speech coders.
Resumo:
The use of bit-level systolic arrays in the design of a vector quantized transformed subband coding system for speech signals is described. It is shown how the major components of this system can be decomposed into a small number of highly regular building blocks that interface directly to one another. These include circuits for the computation of the discrete cosine transform, the inverse discrete cosine transform, and vector quantization codebook search.
Resumo:
The real time implementation of an efficient signal compression technique, Vector Quantization (VQ), is of great importance to many digital signal coding applications. In this paper, we describe a new family of bit level systolic VLSI architectures which offer an attractive solution to this problem. These architectures are based on a bit serial, word parallel approach and high performance and efficiency can be achieved for VQ applications of a wide range of bandwidths. Compared with their bit parallel counterparts, these bit serial circuits provide better alternatives for VQ implementations in terms of performance and cost. © 1995 Kluwer Academic Publishers.
Resumo:
An overview is given of a systolic VLSI compiler (SVC) tool currently under development for the automated design of high performance digital signal processing (DSP) chips. Attention is focused on the design of systolic vector quantization chips for use in both speech and image coding systems. The software in question consists of a cell library, silicon assemblers, simulators, test pattern generators, and a specially designed graphics shell interface which makes it expandable and user friendly. It allows very high performance digital coding systems to be rapidly designed in VLSI.
Resumo:
Background: Rift Valley fever (RVF) is a zoonotic arbovirosis for which the primary hosts are domestic livestock (cattle, sheep and goats). RVF was first described in South Africa in 1950-1951. Mechanisms for short and long distance transmission have been hypothesised, but there is little supporting evidence. Here we describe RVF occurrence and spatial distribution in South Africa in 2008-11, and investigate the presence of a contagious process in order to generate hypotheses on the different mechanisms of transmission. Methodology/Principal Findings: A total of 658 cases were extracted from World Animal Health Information Database. Descriptive statistics, epidemic curves and maps were produced. The space-time K-function was used to test for evidence of space-time interaction. Five RVF outbreak waves (one in 2008, two in 2009, one in 2010 and one in 2011) of varying duration, location and size were reported. About 70% of cases (n = 471) occurred in 2010, when the epidemic was almost country-wide. No strong evidence of space-time interaction was found for 2008 or the second wave in 2009. In the first wave of 2009, a significant space-time interaction was detected for up to one month and over 40 km. In 2010 and 2011 a significant intense, short and localised space-time interaction (up to 3 days and 15 km) was detected, followed by one of lower intensity (up to 2 weeks and 35 to 90 km). Conclusions/Significance: The description of the spatiotemporal patterns of RVF in South Africa between 2008 and 2011 supports the hypothesis that during an epidemic, disease spread may be supported by factors other than active vector dispersal. Limitations of under-reporting and space-time K-function properties are discussed. Further spatial analyses and data are required to explain factors and mechanisms driving RVF spread. © 2012 Métras et al.
Resumo:
We investigated and characterized the effect of externally applied electric fields (EF) on retinal pigment epithelial (RPE) cells by exposing primary cultures of human RPE cells (hRPE) and those from the ARPE19 immortalized cell line to various strengths of EF (EF-treated cells) or to no EF (control cells) under different conditions including presence or absence of serum and gelatin and following wounding. We evaluated changes in RPE cell behavior in response to EF by using a computer based image capture and analysis system (Metamorph). We found that RPE cells responded to externally applied EFs by preferential orientation perpendicular to the EF vector, directed migration towards the anode, and faster translocation rate than control, untreated cells. These responses were voltage-dependent. Responses were observed even at low voltages, of 50-300 mV. Furthermore, the migration of hRPE cell sheets generated by wounding of confluent monolayers of cells at early and late confluence could be manipulated by the application of EF, with directed migration towards the anode observed at both sides of the wounded hRPE. In conclusion, RPE cell behaviour can be controlled by an externally applied EF. The potential for externally applied EF to be used as a therapeutic strategy in the management of selected retinal diseases warrants further investigation. © 2010 Elsevier Ltd.
Resumo:
Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibody-functionalized surface, based on antibody–antigen interaction and the localized surface plasmon resonance (LSPR) ?max shifts of the resonant Rayleigh light scattering spectra. By replacing the cetyltrimethylammonium bromide (CTAB), a tightly packed self-assembled monolayer of HS(CH2)11(OCH2CH2)6OCH2COOH(OEG6) has been successfully formed on the gold nanorod surface prior to the LSPR sensing, leading to the successful fabrication of individual gold nanorod immunosensors. Using prostate specific antigen (PSA) as a protein biomarker, the lowest concentration experimentally detected was as low as 111 aM, corresponding to a 2.79 nm LSPR ?max shift. These results indicate that the detection platform is very sensitive and outperforms detection limits of commercial tests for PSA so far. Correlatively, its detection limit can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple, label-free detection with ultrahigh sensitivity.
Resumo:
In recent years, gradient vector flow (GVF) based algorithms have been successfully used to segment a variety of 2-D and 3-D imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods may lead to biased segmentation results. In this paper, we propose MSGVF, a mean shift based GVF segmentation algorithm that can successfully locate the correct borders. MSGVF is developed so that when the contour reaches equilibrium, the various forces resulting from the different energy terms are balanced. In addition, the smoothness constraint of image pixels is kept so that over- or under-segmentation can be reduced. Experimental results on publicly accessible datasets of dermoscopic and optic disc images demonstrate that the proposed method effectively detects the borders of the objects of interest.