166 resultados para Pesticide residues in food
Resumo:
A rapid and sensitive biosensor immunoassay was developed for determination of ivermectin residues in bovine milk. A detection limit of 16.2 ng/mL was achieved. A Biacore optical biosensor based on surface plasmon resonance was used, and a range of extraction techniques was investigated. In the final assay procedure, ivermectin was extracted with acetonitrile followed by C-8 solid-phase extraction cleanup. It was proven experimentally that 2 methods of milk storage, freezing or addition of mercury-containing compounds as preservatives, could be used without considerable change in detected concentrations (samples were fortified with ivermectin after storage). The average values for milk samples spiked at 100 and 50 ng/mL concentrations were 102.6 and 51.5 ng/mL, respectively. Extraction and analysis of 20 milk samples were performed within a single working day.
Resumo:
Avermectins are frequently used to control parasitic infestations in many animal species. Previous studies have shown the long-term persistence of unwanted residues of these drugs in animal tissues and fluids. An immunoassay screening test for the detection acid quantification of ivermectin residues in bovine milk has been developed. After an extensive extraction procedure, milk samples were applied to a competitive dissociation-enhanced lanthanide fluoroimmunoassay using a monoclonal antibody against an ivermectin-transferrin conjugate, The monoclonal antibody, raised in Balb C mice, showed cross-reactivity with eprinomectin (92%), abamectin (82%) and doramectin (16%). The limit of detection of the assay (mean + 3 SD), calculated from the analysis of 17 known negative samples, was calculated as 4.6 ng/mL. Intra- and inter-assay RSDs were determined as 11.6% and 15.8%, respectively, using a negative bovine milk sample fortified with 25 ng/mL ivermectin. Six Friesian milking cows were treated with ivermectin, three with a pour-on formulation of the drug and three with an injectable solution at the manufacturer's recommended dose rate. An initial mean peak in ivermectin residue concentration was detected at day 4 (mean level = 47.5 ng/mL) and day 5 post-treatment (mean level = 26.4 ng/mL) with the injectable form and pour-on treatment, respectively. A second peak in residue concentration was observed using the DELFIA(R) procedure 28 days post-treatment in both treatment groups (23.1 ng/mL injectable and 51.9 ng/mL pour-on). These second peaks were not confirmed by HPLC and must at this Lime be considered to be false-positive results. By day 35 after treatment the mean ivermectin residue concentration of both groups fell below the limit of detection of the assay. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
A rapid imununoassay using an optical biosensor (BIAcore(TM)) for determining the presence of sulphadiazine (SDZ) residues in pig bile was developed. SDZ,cas immobilised onto the surface of a dextran-coated silicon chip and a solution containing SDZ antibody, sample and buffer was injected over the chip surface. The level of antibody binding to the chip was determined after 20 s and the surface of the chip was then regenerated over a 1-min period prior to another sample injection taking place. Standard curves were constructed to allow quantification of SDZ presence in sample. Concentrations ranging from 0 to 10.64 mu g ml(-1) SDZ were detected in bile samples taken from experimentally fed pigs and randomly selected pigs taken from a local slaughterhouse. These results were compared to the concentrations of SDZ detected by high-performance liquid chromatography: in associated tissues. When concentrations in bile exceeded 0.6 mu g ml(-1) SDZ, the corresponding edible tissue was above the maximum residue level (MRL), i.e. 0.1 mu g g(-1) in 13 out of 14 cases. Wizen the bile concentration was less than 0.6 mu ml(-1) the associated tissue concentrations never exceeded rite MRL. This experiment has indicated that biosensor analysis of bile is a highly effective method for detecting violative SDZ residues in meat.
Resumo:
19-Nortestosterone (beta-NT) is banned for use as a growth promoter in food animals within the European Union. For regulatory control purposes, urine and bile samples are routinely screened by immunoassay. The aim of the present study was to compare the ability of two immunoassays, using two rabbit polyclonal antibodies raised against two different NT derivatives, to detect NT residues in bovine bile. One antiserum cross-reacted with both alpha-NT and beta-NT (alpha/beta-NT), whereas the other was specific for alpha-NT. Bile samples from 266 slaughtered cattle were deconjugated and analyzed using both antibodies, with all screening positives (>2 ng ml(-1)) confirmed by high resolution gas chromatography mass spectrometry. The alpha/beta-NT and alpha-NT antibody-based ELISAs screened 39 and 44 samples positive, respectively, with NT confirmed in 22 and 39, respectively. The alpha/beta-NT antibody-based ELISA produced a false-negative rate of 44% compared to 0% for the alpha-NT antibody-based ELISA. Supplementary investigations concluded that a matrix effect was a major cause of the marked differences in false-negative rates. This result underlines the necessity to validate immunoassays in the sample matrix.
Resumo:
beta-Agonists are among the most widely abused drugs in veterinary medicine for the illegal promotion of farm animal growth. An array of analytical procedures has been developed to detect the residues of these compounds in many biological materials. As the number of beta-agonist formulations increases, it has become increasingly difficult to devise screening techniques capable of detecting a broad spectrum of these residues in a single test. A dual immunoassay based on time-resolved fluorescence was developed that incorporated a monoclonal antibody raised to tertiary butyl amines and a polyclonal antibody to biphenolic beta-agonists. This assay was capable of detecting residues of a range of beta-agonists present in bovine urine without the need for sample extraction. The limits of detection of the assay ranged from 1 to 8.5 ng ml(-1) depending on the cross-reactivity of individual compounds with the antibodies employed in the procedure.
Resumo:
Solid-phase extraction (SPE) and direct competitive chemiluminescence enzyme immunoassay (dcCL-EIA) were combined for the detection of organophosphorus pesticides (OPs) in environmental water samples. dcCL-EIA based on horseradish peroxidase labeled with a broad-specificity monoclonal antibody against OPs was developed, and the effects of several physicochemical parameters on dcCL-EIA performance were studied. SPE was used for the pretreatment of water samples to remove interfering substances and to concentrate the OP analytes. The coupling of SPE and dcCL-EIA can detect seven OPs (parathion, coumaphos, phoxim, quinalphos, triazophos, dichlofenthion, and azinphos-ethyl) with the limit of quantitation below 0.1 ng/mL. The recoveries of OPs from spiked water samples ranged from 62.5% to 131.7% by SPE-dcCL-EIA and 69.5% to 112.3% by SPE-HPLC-MS/MS. The screening of OP residues in real-world environmental water samples by the developed SPE-dcCL-EIA and their confirmatory analysis using SPE-HPLC-MS/MS demonstrated that the assay is ideally suited as a monitoring method for OP residues prior to chromatographic analysis.
Resumo:
Mass spectrometric methods were developed and validated for the analysis in chicken muscle of a range of antibiotic growth promoters: spiramycin, tylosin, virginiamycin and bacitracin, and separately for two marker metabolites of carbadox (quinoxaline-2-carboxylic acid and 1,4-bisdesoxycarbadox), and a marker metabolite of olaquindox (3-methyl-quinoxaline-2-carboxylic acid). The use of these compounds as antibiotic growth promoters has been banned by the European Commission. This study aimed to develop methods to detect their residues in muscle samples as a means of checking for the use of these drugs during the rearing of broiler chickens. When fed growth-promoting doses for 6 days, spiramycin (31.4 mu g kg(-1)), tylosin (1.0 mu g kg(-1)), QCA (6.5 mu g kg(-1)), DCBX (71.2 mu g kg(-1)) and MQCA (0.2 mu g kg(-1)) could be detected in the muscle 0 days after the withdrawal of fortified feed. Only spiramycin could consistently be detected beyond a withdrawal period of 1 day. All analytes showed stability commercial cooking process, therefore raw or cooked muscle could be used for monitoring purposes.
Resumo:
The increasing frequency of product recalls within the agri-food industry has led many to question food safety. Research studies also often focus on biological hazards without considering how past, present and emerging risks change over time. We undertake a systematic review of the different biological, operational and chemical hazards within the agri-food industry using a dataset of 2070 registered food recalls in the USA, UK and Republic of Ireland between 2004 and 2010. We show product recalls have become more frequent over time and operational hazards, rather than biological and chemical hazards, are the most frequent recall type within the agri-food industry. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Dioxin contamination of the food chain typically occurs when cocktails of combustion residues or polychlorinated biphenyl (PCB) containing oils become incorporated into animal feed. These highly toxic compounds are bioaccumulative with small amounts posing a major health risk. The ability to identify animal exposure to these compounds prior to their entry into the food chain may be an invaluable tool to safeguard public health. Dioxin-like compounds act by a common mode of action and this suggests that markers or patterns of response may facilitate identification of exposed animals. However, secondary co-contaminating compounds present in typical dioxin sources may affect responses to compounds. This study has investigated for the first time the potential of a metabolomics platform to distinguish between animals exposed to different sources of dioxin contamination through their diet. Sprague-Dawley rats were given feed containing dioxin-like toxins from hospital incinerator soot, a common PCB oil standard and pure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (normalized at 0.1 µg/kg TEQ) and acquired plasma was subsequently biochemically profiled using ultra high performance liquid chromatography (UPLC) quadropole time-of-flight-mass spectrometry (QTof-MS). An OPLS-DA model was generated from acquired metabolite fingerprints and validated which allowed classification of plasma from individual animals into the four dietary exposure study groups with a level of accuracy of 97-100%. A set of 24 ions of importance to the prediction model, and which had levels significantly altered between feeding groups, were positively identified as deriving from eight identifiable metabolites including lysophosphatidylcholine (16:0) and tyrosine. This study demonstrates the enormous potential of metabolomic-based profiling to provide a powerful and reliable tool for the detection of dioxin exposure in food-producing animals.
Resumo:
Even moderate arsenic exposure may lead to health problems, and thus quantifying inorganic arsenic (iAs) exposure from food for different population groups in China is essential. By analyzing the data from the China National Nutrition and Health Survey (CNNHS) and collecting reported values of iAs in major food groups, we developed a framework of calculating average iAs daily intake for different regions of China. Based on this framework, cancer risks from As in food was deterministically and probabilistically quantified. The article presents estimates for health risk due to the ingestion of food products contaminated with arsenic. Both per individual and for total population estimates were obtained. For the total population, daily iAs intake is around 42 mu g day(-1), and rice is the largest contributor of total iAs intake accounting for about 60%. Incremental lifetime cancer risk from food iAs intake is 106 per 100,000 for adult individuals and the median population cancer risk is 177 per 100,000 varying between regions. Population in the Southern region has a higher cancer risk than that in the Northern region and the total population. Sensitive analysis indicated that cancer slope factor, ingestion rates of rice, aquatic products and iAs concentration in rice were the most relevant variables in the model, as indicated by their higher contribution to variance of the incremental lifetime cancer risk. We conclude that rice may be the largest contributor of iAs through food route for the Chinese people. The population from the South has greater cancer risk than that from the North and the whole population. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Multiplexed immunochemical detection platforms offer the potential to decrease labour demands, increase sample throughput and decrease overall time to result. A prototype four channel multiplexed high throughput surface plasmon resonance biosensor was previously developed, for the detection of food related contaminants. A study focused on determining the instruments performance characteristics was undertaken. This was followed by the development of a multiplexed assay for four high molecular weight proteins. The protein levels were simultaneously evaluated in serum samples of 10-week-old veal calves (n = 24) using multiple sample preparation methods. Each of the biosensor's four channels were shown to be independent of one another and produced multiplexed within run repeatability (n = 6) ranging from 2.0 to 6.7%CV, for the four tested proteins, whilst between run reproducibility (n = 4) ranged from 1.5 to 8.9%CV. Four calibration curves were successfully constructed before serum sample preparation was optimised for each protein. Multiplexed concentration analysis was successfully performed on four channels revealing that each proteins concentration was consistent across the twenty-four tested animals. Signal reproducibility (n > 19) on a further long term study revealed coefficient of variation ranging from 1.1% to 7.3% and showed that the multiplexed assay was stable for at least 480 cycles. These findings indicate that the performance characteristics fall within the range of previously published data for singleplex optical biosensors and that the multiplexing biosensor is fit-for-purpose for simultaneous concentration analysis in many different types of applications such as the multiplexed detection of markers of growth-promoter abuse and multiplexed detection of residues of concern in food safety. © 2013 Elsevier B.V.
Resumo:
The safety of our food is an essential requirement of society. One well-recognised threat is that of chemical contamination of our food, where low-molecular-weight compounds such as biotoxins, drug residues and pesticides are present. Low-cost, rapid screening procedures are sought to discriminate the suspect samples from the population, thus selecting only these to be forwarded for confirmatory analysis. Many biosensor assays have been developed as screening tools in food contaminant analysis, but these tend to be electrochemical, fluorescence or surface plasmon resonance based. An alternative approach is the use of biolayer interferometry, which has become established in drug discovery and life science studies but is only now emerging as a potential tool in the analysis of food contaminants. A biolayer interferometry biosensor was assessed using domoic acid as a model compound. Instrument repeatability was tested by simultaneously producing six calibration curves showing replicate repeatability (n = 2) ranging from 0.1 to 6.5 % CV with individual concentration measurements (n = 12) ranging from 4.3 to 9.3 % CV, giving a calibration curve midpoint of 7.5 ng/ml (2.3 % CV (n = 6)). Reproducibility was assessed by producing three calibration curves on different days, giving a midpoint of 7.5 ng/ml (3.4 %CV (n = 3)). It was further shown, using assay development techniques, that the calibration curve midpoint could be adjusted from 10.4 to 1.9 ng/ml by varying assay parameters before the simultaneous construction of three calibration curves in matrix and buffer. Sensitivity of the assay compared favourably with previously published biosensor data for domoic acid. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Nanotechnology has relevance to applications in all areas of agri-food including agriculture, aquaculture, production, processing, packaging, safety and nutrition. Scientific literature indicates uncertainties in food safety aspects about using nanomaterials due to potential health risks. To date the agri-food industry's awareness and attitude towards nanotechnology have not been addressed. We surveyed the awareness and attitudes of agri-food organisations on the island of Ireland (IoI) with regards to nanotechnology. A total of 14 agri-food stakeholders were interviewed and 88 agri-food stakeholders responded to an on-line questionnaire. The findings indicate that the current awareness of nanotechnology applications in the agri-food sector on the IoI is low and respondents are neither positive nor negative towards agri-food applications of nanotechnology. Safer food, reduced waste and increased product shelf life were considered to be the most important benefits to the agri-food industry. Knowledge of practical examples of agri-food applications is limited however opportunities were identified in precision farming techniques, innovative packaging, functional ingredients and nutrition of foods, processing equipment, and safety testing. Perceived impediments to nanotechnology adoption were potential unknown human health and environmental impacts, consumer acceptance and media framing. The need for a risk assessment framework, research into long term health and environmental effects, and better engagement between scientists, government bodies, the agri-food industry and the public were identified as important.
Resumo:
Mycobacterium avium ssp. paratuberculosis (MAP), the cause of Johne's disease in cattle, sheep and goats, may have a role in Crohn's disease in humans. Animals with Johne's disease shed viable MAP in their milk and faeces. The organism is also widely disseminated in the blood and tissues of infected animals. Consequently, transmission to humans via consumption of animal-derived foods is a distinct possibility. Milk, other dairy products, beef and water have been identified as possible food vehicles of transmission. To date, viable MAP has been cultured from raw cows', sheep and goats' milk, retail pasteurized cows' milk, and some retail cheeses in several countries during recent studies. MAP has not been isolated from retail beef to date, although limited testing has been carried out. The public health consequences, if any, of low numbers of viable MAP being periodically consumed by susceptible individuals are uncertain. An association between MAP and Crohn's disease is not proven, but neither can it be discounted on the basis of current evidence. A precautionary approach is therefore warranted in relation to the existence of MAP in food, and action is needed to reduce the prevalence of Johne's disease in the cattle population worldwide, in order to minimize public exposure to this potential human pathogen.
Resumo:
Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade-off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass-specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.