135 resultados para Optimum pH
Resumo:
To examine the effect of elevated pH, as reported during urinary catheter infections, on quinolone activity against the urease-producing pathogen Proteus mirabilis.
Resumo:
Diblock copolymer vesicles are tagged with pH-responsive Nile Blue-based labels and used as a new type of pH-responsive colorimetric/fluorescent biosensor for far-red and near-infrared imaging of live cells. The diblock copolymer vesicles described herein are based on poly(2-(methacryloyloxy)ethyl phosphorylcholine-block-2-(diisopropylamino)ethyl methacrylate) [PMPC-PDPA]: the biomimetic PMPC block is known to facilitate rapid cell uptake for a wide range of cell lines, while the PDPA block constitutes the pH-responsive component that enables facile vesicle self-assembly in aqueous solution. These biocompatible vesicles can be utilized to detect interstitial hypoxic/acidic regions in a tumor model via a pH-dependent colorimetric shift. In addition, they are also useful for selective intracellular staining of lysosomes and early endosomes via subtle changes in fluorescence emission. Such nanoparticles combine efficient cellular uptake with a pH-responsive Nile Blue dye label to produce a highly versatile dual capability probe. This is in marked contrast to small molecule dyes, which are usually poorly uptaken by cells, frequently exhibit cytotoxicity, and are characterized by intracellular distributions invariably dictated by their hydrophilic/hydrophobic balance.
Resumo:
Representing a new category of polymer-drug conjugates, brush polymer-drug conjugates were prepared by ring-opening metathesis copolymerization. Following judicious structural design, these conjugates exhibited well-shielded drug moieties, significant water solubility, well-defined nanostructures, and acid-triggered drug release.
Resumo:
The design, development and evaluation of an optical fibre pH sensor for monitoring pH in the alkaline region are discussed in detail in this paper. The design of this specific pH sensor is based on the pH induced change in fluorescence intensity of a coumarin imidazole dye which is covalently attached to a polymer network and then fixed to the distal end of an optical fibre. The sensor provides a response over a pH range of 10.0–13.2 with an acceptable response rate of around 50 min, having shown a very good stability over a period of longer than 20 months thus far. The sensor has also demonstrated little cross-sensitivity to ionic strength (IS) and also excellent photostability through a series of laboratory tests. These features make this type of sensor potentially well suited for in situ long term monitoring of pH in concrete structures, to enhance structural monitoring in the civil engineering sector
Resumo:
Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86 mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5 cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.
Resumo:
This laboratory experiment systematically examines arsenic, iron, and phosphorus solubilities in soil suspensions as affected by addition of phosphorus fertilizer under different redox potential (Eh) and pH conditions. Under aerobic conditions, As solubility was low, however, under moderately reducing conditions (0, -150 mV), As solubility significantly increased due to dissolution of iron oxy-hydroxides. Upon reduction to -250 mV, As solubility was controlled by the formation of insoluble sulfides, and as a result soluble As contents significantly decreased. Soluble Fe concentration increased from moderate to highly anaerobic conditions; however, it decreased under aerobic conditions likely due to formation of insoluble oxy-hydroxides. A low pH, 5.5, led to increased soluble concentrations of As, Fe, and P. Finally, addition of P-fertilizers resulted in higher soluble P and As, even though the concentration of As did not increased after an addition rate of 600 mg P kg(-1) soil. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of proteinaceous foods, particularly meat. To assist in the ongoing search for biomarkers of HCA exposure in blood, a method is described for the extraction from human plasma of the most abundant HCAs: 2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (and its isomer 7,8-DiMeIQx), using Hollow Fibre Membrane Liquid-Phase Microextraction. This technique employs 2.5 cm lengths of porous polypropylene fibres impregnated with organic solvent to facilitate simultaneous extraction from an alkaline aqueous sample into a low volume acidic acceptor phase. This low cost protocol is extensively optimised for fibre length, extraction time, sample pH and volume. Detection is by UPLC-MS/MS using positive mode electrospray ionisation with a 3.4 min runtime, with optimum peak shape, sensitivity and baseline separation being achieved at pH 9.5. To our knowledge this is the first description of HCA chromatography under alkaline conditions. Application of fixed ion ratio tolerances for confirmation of analyte identity is discussed. Assay precision is between 4.5 and 8.8% while lower limits of detection between 2 and 5 pg/mL are below the concentrations postulated for acid-labile HCA-protein adducts in blood.
Resumo:
A new pathway to (+)-inthomycin C is reported that exploits an O-directed free radical hydrostannation reaction on (−)-12 and a Stille cross-coupling as key steps. Significantly, the latter process was effected on 19 where a gauche-pentane repulsive interaction could interfere. Our stereochemical studies on the alkynol (−)-12 and the enyne (+)-7 confirm that Ryu and Hatakeyama’s (3S)-stereochemical revision of (+)-inthomycin C is invalid and that Zeeck and Taylor’s original (3R)-stereostructure for (+)-inthomycin C is correct.
Resumo:
Abstract Image
Herein a new double O-directed free radical hydrostannation reaction is reported on the structurally complex dialkyldiyne 11. Through our use of a conformation-restraining acetal to help prevent stereocenter-compromising 1,5-H-atom abstraction reactions by vinyl radical intermediates, the two vinylstannanes of 10 were concurrently constructed with high stereocontrol using Ph3SnH/Et3B/O2. Distannane 10 was thereafter elaborated into the bis-vinyl iodide 9 via O-silylation and double I–Sn exchange; double Stille coupling of 9, O-desilylation, and oxidation thereafter furnished 8.
Resumo:
Herein we report the synthesis, characterisation and hydrolytic release kinetics of a suite of novel, polymerisable ester quinolone conjugates with varying alkenyl chain lengths. Hydrolysis was shown to proceed up to 17-fold faster upon elevation of pH from neutral to pH 9.29, making these conjugates attractive for the development of 'designer' infection-resistant urinary biomaterials exploiting the increase in urine pH reported at the onset of catheter-associated infection to trigger drug release. (C) 2013 Elsevier Ltd. All rights reserved.