181 resultados para G?mez Jattin, Ra?l, 1945-1997


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently isolated a cDNA (SKV1.1) encoding a Shakei-related K+ channel from the human parasitic trematode Schistosoma mansoni. In order to better understand the functions of SKv1.1 protein, the distribution of SKv1.1 protein in adult S. mansoni was analyzed by immunohistochemistry using a region-specific antibody. SKV1.1 proteins were widely expressed in the nervous and muscular systems. The strongest immunoreactivity (IR) was observed in the nervous system of both male and female. In the nervous system, IR for SKv1.1 proteins was localized in cell bodies and nerve fibers of the anterior ganglia, the central commissure, and the main nerve cords. IR was also observed in the dorsal and the ventral peripheral nerve nets, fine nerve fibers entering into a variety of structures such as the dorsal tubercles, longitudinal and ventral muscle fibers, and oral and ventral suckers. In the muscular system, SKv1.1 proteins were localized to the longitudinal, circular, and ventral muscle fibers of male as well as in isolated muscle fibers where native A-type K+ currents were measured. Moderate IR was also seen in a large number of cell bodies in the parenchyma. These results indicate that SKv1.1 protein may play an important role in the regulation of the excitability of neurons and muscle cells of S. mansoni. (C) 1995 Academic Press, Inc.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a primer to a conserved nucleotide sequence of previously-cloned skin peptides of Phyllomedusa species, two distinct cDNAs were “shotgun” cloned from a skin secretion-derived cDNA library of the frog, Phyllomedusa burmeisteri. The two ORFs separately encode chains A and B of an analog of the previously-reported heterodimeric peptide, distinctin. LC-MS/MS analysis of native versus dithiotreitol reduced crude venom, confirmed the predicted primary sequences as well as the cystine link between the two monomers. Distinctin predominantly exists in the venom as a heterodimer (A-B), neither of the constituent peptides were detected as monomer, whereas of the two possible homodimers (A-A or B-B), only B-B was detected in comparatively low quantity. In vitro dimerization of synthetic replicates of the monomers demonstrated that besides heterodimer, both homodimers are also formed in considerable amounts. Distinctin is the first example of an amphibian skin dimeric peptide that is formed by covalent linkage of two chains that are the products of different mRNAs. How this phenomenon occurs in vivo, to exclude significant homodimer formation, is unclear at present but a “favored steric state” type of interaction between chains is most likely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoresponsive polymeric platforms are used to optimise drug delivery in pharmaceutical systems and bioactive medical devices. However, the practical application of these systems is compromised by their poor mechanical properties. This study describes the design of thermoresponsive semi-interpenetrating polymer networks (s-IPNs) based on cross-linked p(NIPAA) or p(NIPAA-co-HEMA) hydrogels containing poly(e-caprolactone) designed to address this issue. Using DSC, the lower critical solution temperature of the co-polymer and p(NIPAA) matrices were circa 34 °C and 32 °C, respectively. PCL was physically dispersed within the hydrogel matrices as confirmed using confocal scanning laser microscopy and DSC and resulted in marked changes in the mechanical properties (ultimate tensile strength, Young's modulus) without adversely compromising the elongation properties. P(NIPAA) networks containing dispersed PCL exhibited thermoresponsive swelling properties following immersion in buffer (pH 7), with the equilibrium-swelling ratio being greater at 20 °C than 37 °C and greatest for p(NIPAA)/PCL systems at 20 °C. The incorporation of PCL significantly lowered the equilibrium swelling ratio of the various networks but this was not deemed practically significant for s-IPNs based on p(NIPAA). Thermoresponsive release of metronidazole was observed from s-IPN composed of p(NIPAA)/PCL at 37 °C but not from p(NIPAA-co-HEMA)/PCL at this temperature. In all other platforms, drug release at 20 °C was significantly similar to that at 37 °C and was diffusion controlled. This study has uniquely described a strategy by which thermoresponsive drug release may be performed from polymeric platforms with highly elastic properties. It is proposed that these materials may be used clinically as bioactive endotracheal tubes, designed to offer enhanced resistance to ventilator associated pneumonia, a clinical condition associated with the use of endotracheal tubes where stimulus responsive drug release from biomaterials of significant mechanical properties would be advantageous. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinically, our ability to predict disease outcome for patients with early stage lung cancer is currently poor. To address this issue, tumour specimens were collected at surgery from non-small cell lung cancer (NSCLC) patients as part of the European Early Lung Cancer (EUELC) consortium. The patients were followed-up for three years post-surgery and patients who suffered progressive disease (PD, tumour recurrence, metastasis or a second primary) or remained disease-free (DF) during follow-up were identified. RNA from both tumour and adjacent-normal lung tissue was extracted from patients and subjected to microarray expression profiling. These samples included 36 adenocarcinomas and 23 squamous cell carcinomas from both PD and DF patients. The microarray data was subject to a series of systematic bioinformatics analyses at gene, network and transcription factor levels. The focus of these analyses was 2-fold: firstly to determine whether there were specific biomarkers capable of differentiating between PD and DF patients, and secondly, to identify molecular networks which may contribute to the progressive tumour phenotype. The experimental design and analyses performed permitted the clear differentiation between PD and DF patients using a set of biomarkers implicated in neuroendocrine signalling and allowed the inference of a set of transcription factors whose activity may differ according to disease outcome. Potential links between the biomarkers, the transcription factors and the genes p21/CDKN1A and Myc, which have previously been implicated in NSCLC development, were revealed by a combination of pathway analysis and microarray meta-analysis. These findings suggest that neuroendocrine-related genes, potentially driven through p21/CDKN1A and Myc, are closely linked to whether or not a NSCLC patient will have poor clinical outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that phospholipase A2 (PLA2) activity is rapidly activated by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) in renal mesangial cells and other cell systems in a manner that suggests a covalent modification of the PLA2 enzyme(s). This PLA2 activity is cytosolic (cPLA2) and is distinct from secretory forms of PLA2, which are also stimulated in mesangial cells in response to cytokines and other agonists. However, longer-term regulation of cPLA2 in renal cells may also occur at the level of gene expression. Cultured rat mesangial cells were used as a model system to test the effects of EGF and PMA on the regulation of cPLA2 gene expression. EGF and PMA both produced sustained increases in cPLA2 mRNA levels, with a parallel increase in enzyme activity over time. Inhibition of protein synthesis by cycloheximide increased basal cPLA2 mRNA accumulation in serum-starved mesangial cells, and the combination of EGF and cycloheximide resulted in super-induction of cPLA2 gene expression compared with EGF alone. Actinomycin D treatment entirely abrogated the effect of EGF on cPLA2 mRNA accumulation. These findings suggest that regulation of cPLA2 is achieved by factors controlling gene transcription and possibly mRNA stability, in addition to previously characterized posttranslational modifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted a genome-wide association study of male breast cancer comprising 823 cases and 2,795 controls of European ancestry, with validation in independent sample sets totaling 438 cases and 474 controls. A SNP in RAD51B at 14q24.1 was significantly associated with male breast cancer risk (P = 3.02 × 10(-13); odds ratio (OR) = 1.57). We also refine association at 16q12.1 to a SNP within TOX3 (P = 3.87 × 10(-15); OR = 1.50).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of milli-scale processing and microwave heating has been investigated for the Cu-catalyzed Ullmann etherification in fine-chemical synthesis, providing improved catalytic activity and selective catalyst heating. Wall-coated and fixed-bed milli-reactors were designed and applied in the Cu-catalyzed Ullmann-type CO coupling of phenol and 4-chloropyridine. In a batch reactor the results show clearly increased yields for the microwave heated process at low microwave powers, whereas high powers and catalyst loadings reduced the benefits of microwave heating. Slightly higher yields were found in the Cu/ZnO wall-coated as compared to the Cu/TiO fixed-bed flow-reactor. The benefit here is that the reaction occurs at the surface of the metal nanoparticles confined within a support film making the nano-copper equally accessible. Catalyst deactivation was mainly caused by Cu oxidation and coke formation; however, at longer process times leaching played a significant role. Catalyst activity could partially be recovered by removal of deposited by-product by means of calcination. After 6h on-stream the reactor productivities were 28.3 and 55.1kgprod/(mR3h) for the fresh Cu/ZnO wall-coated and Cu/TiO fixed-bed reactor, respectively. Comparison of single- and multimode microwaves showed a threefold yield increase for single-mode microwaves. Control of nanoparticles size and loading allows to avoid high temperatures in a single-mode microwave field and provides a novel solution to a major problem for combining metal catalysis and microwave heating. Catalyst stability appeared to be more important and provided twofold yield increase for the CuZn/TiO catalyst as compared to the Cu/TiO catalyst due to stabilized copper by preferential oxidation of the zinc. For this catalyst a threefold yield increase was observed in single-mode microwaves which, to the best of our knowledge, led to a not yet reported productivity of 172kgprod/(mR3h) for the microwave and flow Ullmann CO coupling. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage-gated sodium channels (VGSC) have been linked to inherited forms of epilepsy. The expression and biophysical properties of VGSC in the hippocampal neuronal culture model have not been clarified. In order to evaluate mechanisms of epileptogenesis that are related to VGSC, we examined the expression and function of VGSC in the hippocampal neuronal culture model in vitro and spontaneously epileptic rats (SER) in vivo. Our data showed that the peak amplitude of transient, rapidly–inactivating Na+ current (INa,T) in model neurons was significantly increased compared with control neurons, and the activation curve was shifted to the negative potentials in model neurons in whole cell recording by patch–clamp. In addition, channel activity of persistent, non-inactivating Na+ current (INa,P) was obviously increased in the hippocampal neuronal culture model as judged by single–channel patch–clamp recording. Furthermore, VGSC subtypes NaV1.1, NaV1.2 and NaV1.3 were up-regulated at the protein expression level in model neurons and SER as assessed by Western blotting. Four subtypes of VGSC proteins in SER were clearly present throughout the hippocampus, including CA1, CA3 and dentate gyrus regions, and neurons expressing VGSC immunoreactivity were also detected in hippocampal neuronal culture model by immunofluorescence. These findings suggested that the up-regulation of voltage-gated sodium channels subtypes in neurons coincided with an increased sodium current in the hippocampal neuronal culture model, providing a possible explanation for the observed seizure discharge and enhanced excitability in epilepsy.