182 resultados para Flood Mapping
Resumo:
Aims: To determine whether 80-lead body surface potential mapping (BSPM) improves detection of acute coronary artery occlusion in patients presenting with out-of-hospital cardiac arrest (OHCA) due to ventricular fibrillation (VF) and who survived to reach hospital. Methods and results: Of 645 consecutive patients with OHCA who were attended by the mobile coronary care unit, VF was the initial rhythm in 168 patients. Eighty patients survived initial resuscitation, 59 of these having had BSPM and 12-lead ECG post-return of spontaneous circulation (ROSC) and in 35 patients (age 69±13 yrs; 60% male) coronary angiography performed within 24. h post-ROSC. Of these, 26 (74%) patients had an acutely occluded coronary artery (TIMI flow grade [TFG] 0/1) at angiography. Twelve-lead ECG criteria showed ST-segment elevation (STE) myocardial infarction (STEMI) using Minnesota 9-2 criteria - sensitivity 19%, specificity 100%; ST-segment depression (STD) =0.05. mV in =2 contiguous leads - sensitivity 23%, specificity 89%; and, combination of STEMI or STD criteria - sensitivity 46%, specificity 100%. BSPM STE occurred in 23 (66%) patients. For the diagnosis of TFG 0/1 in a main coronary artery, BSPM STE had sensitivity 88% and specificity 100% (c-statistic 0.94), with STE occurring most commonly in either the posterior, right ventricular or high right anterior territories. Conclusion: Among OHCA patients presenting with VF and who survived resuscitation to reach hospital, post-resuscitation BSPM STE identifies acute coronary occlusion with sensitivity 88% and specificity 100% (c-statistic 0.94). © 2012 Elsevier Ireland Ltd.
Resumo:
The exposure of historic stone to processes of lichen-induced surface biomodification is determined, first and foremost, by the bioreceptivity of those surfaces to lichen colonization. As an important component of surface bioreceptivity, spatiotemporal variation in stone surface temperature plays a critical role in the spatial distribution of saxicolous lichen on historic stone structures, especially within seasonally hot environments. The ornate limestone and tufa stairwell of the Monastery of Cartuja (1516), Granada, Spain, exhibits significant aspect-related differences in lichen distribution. Lichen coverage and
diurnal fluctuations in stone surface temperature on the stairwell were monitored and mapped, under anticyclonic conditions in summer and winter, using an infrared thermometer and Geographical Information Systems approach. This research suggests that it is not extreme high surface temperatures that
determine the presence or absence of lichen coverage on stonework. Instead, average stone surface temperatures
over the course of the year seem to play a critical role in determining whether or not surfaces are receptive to lichen colonization and subsequent biomodification. It is inferred that lichen, capable of surviving extreme surface temperatures during the Mediterranean summer in an ametabolic state, require a respite period of lower temperatures within which they can metabolize, grow and reproduce.
The higher the average annual temperature a surface experiences, the shorter the respite period for any lichen potentially inhabiting that surface. A critical average temperature threshold of approximately 21 ?C has been identified on the stairwell, with average stone surface temperatures greater than this
generally inhibiting lichen colonization. A brief visual condition assessment between lichen-covered and lichen-free surfaces on the limestone sections of the stairwell suggests relative bioprotection induced by lichen coverage, with stonework quality and sharpness remaining more defined beneath lichen-covered surfaces. The methodology employed in this paper may have further applications in the monitoring and mapping of thermal stress fatigue on historic building materials.
Resumo:
We genotyped 2,861 cases of primary biliary cirrhosis (PBC) from the UK PBC Consortium and 8,514 UK population controls across 196,524 variants within 186 known autoimmune risk loci. We identified 3 loci newly associated with PBC (at P <5 × 10(-8)), increasing the number of known susceptibility loci to 25. The most associated variant at 19p12 is a low-frequency nonsynonymous SNP in TYK2, further implicating JAK-STAT and cytokine signaling in disease pathogenesis. An additional five loci contained nonsynonymous variants in high linkage disequilibrium (LD; r(2) > 0.8) with the most associated variant at the locus. We found multiple independent common, low-frequency and rare variant association signals at five loci. Of the 26 independent non-human leukocyte antigen (HLA) signals tagged on the Immunochip, 15 have SNPs in B-lymphoblastoid open chromatin regions in high LD (r(2) > 0.8) with the most associated variant. This study shows how data from dense fine-mapping arrays coupled with functional genomic data can be used to identify candidate causal variants for functional follow-up.
Resumo:
Bit-level systolic-array structures for computing sums of products are studied in detail. It is shown that these can be subdivided into two classes and that within each class architectures can be described in terms of a set of constraint equations. It is further demonstrated that high-performance system-level functions with attractive VLSI properties can be constructed by matching data-flow geometries in bit-level and word-level architectures.
Resumo:
This article summarizes the key findings from the five mapping case studies presented in this special issue and relates them back to the conceptual, definitional, and theoretical issues presented in the opening article (MacCarthaigh & Roness, 2012). In so doing, the article considers the alternative ways in which organizational change can best be captured, mapped, and explained and the key issues to be considered when conducting such exercises. As well as identifying how the case studies have advanced the possibilities for mapping public sector organizational change over time in a cross-national context and the benefits this offers for other aspects of public administration research, the article identifies some impediments to future research and collaboration in the field and suggests ways to overcome them. © Taylor & Francis Group, LLC.
Resumo:
Capturing, mapping, and understanding organizational change within bureaucracies is inherently problematic, and the paucity of empirical research in this area reflects the traditional reluctance of scholars to pursue this endeavor. In this article, drawing on the Irish case of organizational change, potential avenues for overcoming such challenges are presented. Drawing on the resources of a time-series database that captures and codes the life cycle of all Irish public organizations since independence, the article explores the evolution of the Irish administrative system since the independence of the state in 1922. These findings provide some pointers toward overcoming the challenges associated with studying change in Whitehall-type bureaucracies. © Taylor & Francis Group, LLC.
Resumo:
The development of conceptual frameworks for the analysis of social exclusion has somewhat out-stripped related methodological developments. This paper seeks to contribute to filling this gap through the application of self-organising maps (SOMs) to the analysis of a detailed set of material deprivation indicators relating to the Irish case. The SOM approach allows us to offer a differentiated and interpretable picture of the structure of multiple deprivation in contemporary Ireland. Employing this approach, we identify 16 clusters characterised by distinct profiles across 42 deprivation indicators. Exploratory analyses demonstrate that, controlling for equivalised household income, SOM cluster membership adds substantially to our ability to predict subjective economic stress. Moreover, in comparison with an analogous latent class approach, the SOM analysis offers considerable additional discriminatory power in relation to individuals' experience of their economic circumstances. The results suggest that the SOM approach could prove a valuable addition to a 'methodological platform' for analysing the shape and form of social exclusion. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
REMA is an interactive web-based program which predicts endonuclease cut sites in DNA sequences. It analyses Multiple sequences simultaneously and predicts the number and size of fragments as well as provides restriction maps. The users can select single or paired combinations of all commercially available enzymes. Additionally, REMA permits prediction of multiple sequence terminal fragment sizes and suggests suitable restriction enzymes for maximally discriminatory results. REMA is an easy to use, web based program which will have a wide application in molecular biology research. Availability: REMA is written in Perl and is freely available for non-commercial use. Detailed information on installation can be obtained from Jan Szubert (jan.szubert@gmail.com) and the web based application is accessible on the internet at the URL http://www.macaulay.ac.uk/rema. Contact: b.singh@macaulay.ac.uk. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Resumo:
A scanning probe microscopy approach for mapping local irreversible electrochemical processes based on detection of bias-induced frequency shifts of cantilevers in contact with the electrochemically active surface is demonstrated. Using Li ion conductive glass ceramic as a model, we demonstrate near unity transference numbers for ionic transport and establish detection limits for current-based and strain-based detection. The tip-induced electrochemical process is shown to be a first-order transformation and nucleation potential is close to the Li metal reduction potential. Spatial variability of the nucleation bias is explored and linked to the local phase composition. These studies both provide insight into nanoscale ionic phenomena in practical Li-ion electrolyte and also open pathways for probing irreversible electrochemical, bias-induced, and thermal transformations in nanoscale systems.