219 resultados para BETA-CYCLODEXTRINS
Resumo:
A review with 22 refs. The 5-benzylthiazolidine-2,4-dione moiety of insulin sensitizing antidiabetic agents can be replaced by a range of ?-heteroatom functionalized ?-phenylpropanoic acids. ?-Oxy-carboxylic acids show potent antidiabetic activity and one compd., the ?-ethoxyacid (SB 213068), is one of the most potent antihyperglycemic agents yet reported.
Resumo:
Background: The insulin-degrading enzyme gene (IDE) is a strong functional and positional candidate for late onset Alzheimer's disease (LOAD).
Resumo:
Research into the cause of Alzheimer's disease (AD) has identified strong connections to cholesterol. Cholesterol and cholesterol esters can modulate amyloid precursor protein (APP) processing, thus altering production of the A beta peptides that deposit in cortical amyloid plaques. Processing depends on the encounter between APP and cellular secretases, and is thus subject to the influence of cholesterol-dependent factors including protein trafficking, and distribution between membrane subdomains. We have directly investigated endogenous membrane beta-secretase activity in the presence of a range of membrane cholesterol levels in SH-SY5Y human neuroblastoma cells and human platelets. Membrane cholesterol significantly influenced membrane beta-secretase activity in a biphasic manner, with positive correlations at higher membrane cholesterol levels, and negative correlations at lower membrane cholesterol levels. Platelets from individuals with AD or mild cognitive impairment (n = 172) were significantly more likely to lie within the negative correlation zone than control platelets (n = 171). Pharmacological inhibition of SH-SY5Y beta-secretase activity resulted in increased membrane cholesterol levels. Our findings are consistent with the existence of a homeostatic feedback loop between membrane cholesterol level and membrane beta-secretase activity, and suggest that this regulatory mechanism is disrupted in platelets from individuals with cognitive impairment.
Resumo:
Background: Male Irs2(-/-) mice develop fatal type 2 diabetes at 13-14 weeks. Defects in neuronal proliferation, pituitary development and photoreceptor cell survival manifest in Irs2(-/-) mice. We identify retarded renal growth in male and female Irs2(-/-) mice, independent of diabetes.
Resumo:
Background: The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A). Subsequently we have identified a number of human family members and shown that one of these (DUB-3) is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1.
Results: Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable betadefensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating.
Conclusions: The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.
Resumo:
The monomeric GTPase Rap1 controls functional activation of beta2 integrins in leukocytes. In this article, we describe a novel mechanism by which the chemoattractant fMLP activates Rap1 and inside-out signaling of beta2 integrins. We found that fMLP-induced activation of Rap1 in human polymorphonuclear leukocytes or neutrophils and differentiated PLB-985 cells was blocked by inhibitors of the NO/guanosine-3',5'-cyclic monophosphate-dependent protein kinase (cGKI) pathway [N-(3-(aminomethyl)benzyl)acetamidine, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, DT-3 peptide, 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphothioate, Rp-isomer triethylammonium salt-guanosine-3',5'-cyclic monophosphate], indicating that the downstream signaling events in Rap1 activation involve the production of NO and guanosine-3',5'-cyclic monophosphate, as well as the activation of cGKI. Silencing the expression of vasodilator-stimulated phosphoprotein (VASP), a substrate of cGKI, in resting PLB-985 cells or mice neutrophils led to constitutive activation of Rap1. In parallel, silencing VASP in differentiated PLB-985 cells led to recruitment of C3G, a guanine nucleotide exchange factor for Rap1, to the plasma membrane. Expression of murine GFP-tagged phosphodeficient VASP Ser235Ala mutant (murine serine 235 of VASP corresponds to human serine 239) in PLB-985 cells blunted fMLP-induced translocation of C3G to the membrane and activation of Rap1. Thus, bacterial fMLP triggers cGKI-dependent phosphorylation of human VASP on serine 239 and, thereby, controls membrane recruitment of C3G, which is required for activation of Rap1 and beta2 integrin-dependent antibacterial functions of neutrophils.
Resumo:
The synthesis of a series of pyridine- and piperidine-substituted 1,2,3-triazolides linked to a riboside moiety is described. The presence of a triazolide substituent on the pyridine moiety permitted the facile reduction of the latter under mild hydrogenation conditions. These analogues were modelled as to define their similarity to nicotinamide riboside and quantify their ability to bind NAD-dependent protein deacetylases.
Resumo:
Herein we describe our asymmetric total syntheses of (+)-A83586C, (+)-kettapeptin and (+)-azinothricin. We also demonstrate that molecules of this class powerfully inhibit beta-catenin/TCF4- and E2F-mediated gene transcription within malignant human colon cancer cells at low drug concentrations.
Resumo:
A surface plasmon resonance biosensor method was developed to measure zilpaterol residues in sheep urine. A CM-5 sensor chip previously reacted with ethylenediamine to produce an aminoethyl group was coupled with 4-carboxybutyl zilpaterol activated using EDC/NHS. Five polyclonal and four monoclonal antibodies were screened for their suitability to detect low levels of zilpaterol using the biosensor technology. Total binding was greater for polyclonal than monoclonal antibodies, but a less diluted antibody solution was required for polyclonal antibodies. A fixed antibody concentration and various concentrations of zilpaterol were injected to obtain a standard curve for each antibody to allow for B-0 and IC50 determination. The stability of the assay was assessed by the consistency of B0 in repeated experiments extending at least six hours. A measure of non-specific binding allowed the assessment of the specificity of the antibody-immobilized ligand interaction. The effect of varying concentrations of urine on B-0 and IC50 was evaluated to assess the degree of