863 resultados para Astrophysics and Astronomy


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction of a 60 fs 790 nm laser pulse with beams of Ar+, C+, H2+, HD+ and D2+ are discussed. Intensities up to 10^16 Wcm-2 are employed. An experimental z-scanning technique is used to resolve the intensity dependent processes in the confocal volume.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growth of dust grains in the inner regions of late-type stars is shrouded in mystery due to the difficulty of understanding the growth of heterogeneous particles from simple atoms and molecules and the lack of observational data. This article reviews the molecular processes important in circumstellar envelopes and discusses how ALMA might be used to probe the dust formation zone either directly or indirectly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel wide angle spectrometer has been implemented with a highly oriented pyrolytic graphite crystal coupled to an image plate. This spectrometer has allowed us to look at the energy resolved spectrum of scattered x rays from a dense plasma over a wide range of angles ( ~ 30°) in a single shot. Using this spectrometer we were able to observe the temporal evolution of the angular scatter cross section from a laser shocked foil. A spectrometer of this type may also be useful in investigations of x-ray line transfer from laser-plasmas experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An experimental investigation of the argon plasma behavior near the E-H transition in an inductively coupled Gaseous Electronics Conference reference cell is reported. Electron density and temperature, ion density, argon metastable density, and optical emission measurements have been made as function of input power and gas pressure. When plotted versus plasma power, applied power corrected for coil and hardware losses, no hysteresis is observed in the measured plasma parameter dependence at the E-H mode transition. This suggests that hysteresis in the E-H mode transition is due to ignoring inherent power loss, primarily in the matching system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonlinear dynamics of longitudinal dust lattice waves propagating in a dusty plasma bi-crystal is investigated. A “diatomic”-like one-dimensional dust lattice configuration is considered, consisting of two distinct dust grain species with different charges and masses. Two different frequency dispersion modes are obtained in the linear limit, namely, an optical and an acoustic wave dispersion branch. Nonlinear solitary wave solutions are shown to exist in both branches, by considering the continuum limit for lattice excitations in different nonlinear potential regimes. For this purpose, a generalized Boussinesq and an extended Korteweg de Vries equation is derived, for the acoustic mode excitations, and their exact soliton solutions are provided and compared. For the optic mode, a nonlinear Schrödinger-type equation is obtained, which is shown to possess bright- (dark-) type envelope soliton solutions in the long (short, respectively) wavelength range. Optic-type longitudinal wavepackets are shown to be generally unstable in the continuum limit, though this is shown not to be the rule in the general (discrete) case.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.