235 resultados para modernism and architecture
Resumo:
WebCom-G is a fledgling Grid Operating System, designed to provide independent service access through interoperability with existing middlewares. It offers an expressive programming model that automatically handles task synchronisation – load balancing, fault tolerance, and task allocation are handled at the WebCom-G system level – without burdening the application writer. These characteristics, together with the ability of its computing model to mix evaluation strategies to match the characteristics of the geographically dispersed facilities and the overall problem- solving environment, make WebCom-G a promising grid middleware candidate.
Resumo:
High-speed field-programmable gate array (FPGA) implementations of an adaptive least mean square (LMS) filter with application in an electronic support measures (ESM) digital receiver, are presented. They employ "fine-grained" pipelining, i.e., pipelining within the processor and result in an increased output latency when used in the LMS recursive system. Therefore, the major challenge is to maintain a low latency output whilst increasing the pipeline stage in the filter for higher speeds. Using the delayed LMS (DLMS) algorithm, fine-grained pipelined FPGA implementations using both the direct form (DF) and the transposed form (TF) are considered and compared. It is shown that the direct form LMS filter utilizes the FPGA resources more efficiently thereby allowing a 120 MHz sampling rate.
Resumo:
This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.
Resumo:
The present paper proposes for the first time, a novel design methodology based on the optimization of source/drain extension (SDE) regions to significantly improve the trade-off between intrinsic voltage gain (A(vo)) and cut-off frequency (f(T)) in nanoscale double gate (DG) devices. Our results show that an optimally designed 25 nm gate length SDE region engineered DG MOSFET operating at drain current of 10 mu A/mu m, exhibits up to 65% improvement in intrinsic voltage gain and 85% in cut-off frequency over devices designed with abrupt SIDE regions. The influence of spacer width, lateral source/drain doping gradient and symmetric as well as asymmetrically designed SDE regions on key analog figures of merit (FOM) such as transconductance (g(m)), transconductance-to-current ratio (g(m)/I-ds), Early voltage (V-EA), output conductance (g(ds)) and gate capacitances are examined in detail. The present work provides new opportunities for realizing future low-voltage/low-power analog circuits with nanoscale SDE engineered DG MOSFETs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper explores the potential of germanium on sapphire (GeOS) wafers as a universal substrate for System on a Chip (SOC), mm wave integrated circuits (MMICs) and optical imagers. Ge has a lattice constant close to that of GaAs enabling epitaxial growth. Ge, GaAs and sapphire have relatively close temperature coefficients of expansion (TCE), enabling them to be combined without stress problems. Sapphire is transparent over the range 0.17 to 5.5 µm and has a very low loss tangent (a) for frequencies up to 72 GHz. Ge bonding to sapphire substrates has been investigated with regard to micro-voids and electrical quality of the Ge back interface. The advantages of a sapphire substrate for integrated inductors, coplanar waveguides and crosstalk suppression are also highlighted. MOS transistors have been fabricated on GeOS substrates, produced by the Smart-cut process, to illustrate the compatibility of the substrate with device processing. © 2008 World Scientific Publishing Company.
Resumo:
The R-matrix method has proved to be a remarkably stable, robust and efficient technique for solving the close-coupling equations that arise in electron and photon collisions with atoms, ions and molecules. During the last thirty-four years a series of related R-matrix program packages have been published periodically in CPC. These packages are primarily concerned with low-energy scattering where the incident energy is insufficient to ionize the target. In this paper we describe previous term2DRMP,next term a suite of two-dimensional R-matrix propagation programs aimed at creating virtual experiments on high performance and grid architectures to enable the study of electron scattering from H-like atoms and ions at intermediate energies.
Resumo:
To complete the 2DRMP package an asymptotic program, such as FARM, is needed. The original version of FARM is designed to construct the physical R-matrix, R, from surface amplitudes contained in the H-file. However, in 2DRMP, R has already been constructed for each scattering energy during propagation. Therefore, this modified version of FARM, known as as FARM_2DRMP, has been developed solely for use with 2DRMP.
Resumo:
For the purpose of equalisation of rapidly time variant multipath channels, we derive a novel adaptive algorithm, the amplitude banded LMS (ABLMS); which implements a nonlinear adaptation based on a coefficient matrix. Then we develop the: ABLMS algorithm as the adaptation procedure for a linear transversal equaliser (LTE) and a decision feedback equaliser (DFE) where a parallel adaptation scheme is deployed. Computer simulations demonstrate that with a small increase of computational complexity, the ABLMS based parallel equalisers provide a significant improvement related to the conventional LMS DFE and the LMS LTE in the case of a second order Markov communication channel model.
Resumo:
This paper proposes a non-linear adaptive algorithm, the amplitude banded RLS (ABRLS) algorithm, as an adaptation procedure for time variant channel equalizers. In the ABRLS algorithm, a coefficient matrix is updated based on the amplitude level of the received sequence. To enhance the capability of tracking for the ABRLS algorithm, a parallel adaptation scheme is utilized which involves the structures of decision feedback equalizer (DFE). Computer simulations demonstrate that the novel ABRLS based equalizer provides a significant improvement relative to the conventional RLS DFE on a rapidly time variant communication channel.
Resumo:
SoC systems are now being increasingly constructed using a hierarchy of subsystems or silicon Intellectual Property (IP) cores. The key challenge is to use these cores in a highly efficient manner which can be difficult as the internal core structure may not be known. A design methodology based on synthesizing hierarchical circuit descriptions is presented. The paper employs the MARS synthesis scheduling algorithm within the existing IRIS synthesis flow and details how it can be enhanced to allow for design exploration of IP cores. It is shown that by accessing parameterised expressions for the datapath latencies in the cores, highly efficient FPGA solutions can be achieved. Hardware sharing at both the hierarchical and flattened levels is explored for a normalized lattice filter and results are presented.