121 resultados para Hirst


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We irradiated different cellular compartments and measured changes in expression of the FOS gene at the mRNA and protein levels. [H-3]Thymidine and tritiated water were used to irradiate the nucleus and the whole cell, respectively. I-125-Concanavalin A binding was used to irradiate the cell membrane differentially. Changes in FOS mRNA and protein levels were measured using semi-quantitative RT-PCR and SDS-PAGE Western blotting, respectively, Irradiation of the nucleus or the whole cell at a dose rate of 0.075 Gy/h caused no change in the level of FOS mRNA expression, but modestly (1.5-fold) induced FOS protein after 0.5 h, Irradiation of the nucleus at a dose rate of 0.43 Gy/h induced FOS mRNA by 1.5-fold after 0.5 h, but there was no significant effect after whole-cell irradiation. FOS protein was transiently induced 2.5-fold above control levels 0.5 h after a 0.43-Gy/h exposure of the nucleus or the whole cell. Irradiation of the cell membrane at a dose rate of 1.8 Gy/h for up to 2 h caused no change in the levels of expression of FOS mRNA or protein, but a dose rate of 6.8 Gy/h transiently increased the level of FOS mRNA S-fold after 0.5 h, These data demonstrate the complexity of the cellular response to radiation-induced damage at low doses. The lack of quantitative agreement between the transcript and protein levels for FOS suggests a role for posttranscriptional regulation. (C) 2000 by Radiation Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To determine whether repression of a recently isolated, X-ray-responsive gene, DIR1, using antisense oligonucleotides could affect clonogenic cell survival and repair of DNA strand breaks and have a possible role in the mechanism underlying the phenomenon of 'induced radioresistance' (IRR).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The induction and rejoining of radiation-induced double-strand breaks (DSBs) in cells of six bladder tumor cell lines (T24, UM-UC3, TCC-SUP, RT112, J82, HT1376) were measured using the neutral comet assay. Radiation dose-response curves (0-60 Gy) showed damage (measured as mean tail moment) for five of the cell lines in the same rank order as cell survival (measured over 0-10 Gy), with the least damage in the most radioresistant cell line. Damage induction correlated well with clonogenic survival at high doses (SF10) for all six cell lines. At the clinically relevant dose of 2 Gy, correlation was good for four cell lines but poor for two (TCC-SUP and T24), The rejoining process had a fast and slow component for all cell lines. The rate of these two components of DNA repair did not correlate with cell survival. However, the time taken to reduce the amount of DNA damage to preirradiated control levels correlated positively with cell survival at 10 Gy but not 2 Gy; radioresistant cells rejoined the induced DSBs to preirradiation control levels more quickly than the radiosensitive cells. Although the results show good correlation between SF10 and DSBs for all six cell lines, the lack of correlation with SF2 for TCC-SUP and T24 cells would suggest that a predictive test should be carried out at the clinically relevant dose. At present the neutral comet assay cannot achieve this. (C) 2000 by Radiation Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pericytes are known to communicate with endothelial cells by direct contact and by releasing cytokines such as TGF-beta. There is also strong evidence that pericytes act as regulators of endothelial cell proliferation and differentiation. We have investigated the effect of pericyte-conditioned medium (PCM) on proliferation of human microvascular endothelial cells in vitro, together with the expression of the vasoregulatory molecules, constitutive and inducible nitric oxide synthases (ecNOS and iNOS), and endothelin-1 (ET-1). Expression was measured at the mRNA level using semiquantitative RT-PCR for all three genes and at the protein level for ecNOS and iNOS using Western blotting. Growth curves for HMECs showed that PCM inhibits proliferation, eventually leading to cell death. Exposure to PCM repressed iNOS mRNA expression fivefold after 6 h. A similar, though delayed, reduction in protein levels was observed. ecNOS mRNA was slightly induced at 6 h, though there was no significant change in ecNOS protein. By contrast, ET-1 mRNA was induced 2.3-fold after 6 h exposure to PCM. We conclude that pericytes release a soluble factor or factors that are potent inhibitors of endothelial cell growth and promote vasoconstriction by up-regulating endothelin-1 and down-regulating iNOS. (C) 2000 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study determines whether the novel designer biomimetic vector (DBV) can condense anddeliver the cytotoxic iNOS gene to breast cancer cells to achieve a therapeutic effect. We have previouslyshown the benefits of iNOS for cancer gene therapy but the stumbling block to future development hasbeen the delivery system.The DBV was expressed, purified and complexed with the iNOS gene. The particle size and chargewere determined via dynamic light scattering techniques. The toxicity of the DBV/iNOS nanoparticleswas quantified using the cell toxicity and clonogenic assays. Over expression of iNOS was confirmed viaWestern blotting and Griess test.The DBV delivery system fully condensed the iNOS gene with nanoparticles less than 100 nm. Transfectionwith the DBV/iNOS nanoparticles resulted in a maximum of 62% cell killing and less than 20%clonogenicity. INOS overexpression was confirmed and total nitrite levels were in the range of 18M.We report for the first time that the DBV can successfully deliver iNOS and achieve a therapeuticeffect. There is significant cytotoxicity coupled with evidence of a bystander effect. We concludethat the success of the DBV fusion protein in the delivery of iNOS in vitro is worthy of future in vivo experiments.