66 resultados para brown mustard
Resumo:
The marine brown alga Halidrys siliquosa is known to produce compounds with antifouling activity against several marine bacteria. The aim of this study was to evaluate the antimicrobial and antibiofilm activity of organic extracts obtained from the marine brown alga H. siliquosa against a focused panel of clinically relevant human pathogens commonly associated with biofilm-related infections. The partially fractionated methanolic extract obtained from H. siliquosa collected along the shores of Co. Donegal; Ireland; displayed antimicrobial activity against bacteria of the genus Staphylococcus; Streptococcus; Enterococcus; Pseudomonas; Stenotrophomonas; and Chromobacterium with MIC and MBC values ranging from 0.0391 to 5 mg/mL. Biofilms of S. aureus MRSA were found to be susceptible to the algal methanolic extract with MBEC values ranging from 1.25 mg/mL to 5 mg/mL respectively. Confocal laser scanning microscopy using LIVE/DEAD staining confirmed the antimicrobial nature of the antibiofilm activity observed using the MBEC assay. A bioassay-guided fractionation method was developed yielding 10 active fractions from which to perform purification and structural elucidation of clinically-relevant antibiofilm compounds.
Resumo:
Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.